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1 Introduction 
 

One of the most important theorems in statistical mathematics and probability 

theory is the Central Limit Theorem (CLT). It is used almost everywhere where 

statistical mathematics is applied. The usefulness of the theorem lies in its simple 

definition. The central limit theorem states that if some certain conditions are 

satisfied, then the distribution of the arithmetic mean of a number of independent 

random variables approaches a normal distribution as the number of variables 

approaches infinity. In other words, there is no need to know very much about the 

actual distribution of the variables, as long as there are enough instances of them 

their sum can be treated as normally distributed. The beauty of the theorem thus 

lies in its simplicity. As an example, we show the distribution of the sum of 

uniform distributions with 1, 2, 8, and 32 summands respectively in Figure 1. 

 

 

 

Figure 1: The distribution of the sum of uniform distributions, with 1, 2,8, and 32  
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In this study, we will take a look at the history of the central limit theorem, from its 

first simple forms through its evolution into its current format. We will discuss the 

early history of the theorem when probability theory was not yet considered part of 

rigorous mathematics. We will then follow the evolution of the theorem as more 

mathematicians play their part in its history to the final solution given by Lévy, 

Feller and Cramér in the 1930s. In this study, we will not supply complete proofs at 

any stage, but concentrate on the new things that each mathematician contributed.  

 

2 Laplace's central limit theorem 
 

The history of the central theorem starts with Laplace at the end of the 18th 

century. Sums of independent random variables had been studied for many 

different error distributions before 1810 when Laplace release his first paper about 

the CLT. However, they had mostly led to very complicated formulas. In Laplace's 

probabilistic work sums of random variables played an important role from the 

beginning. Already in one of his first papers of 1776, he was working on 

calculating the probability distribution of the sum of meteor inclination angles. He 

there faced the problem of the deviations between the arithmetic mean of the data 

(which were inflicted with observational errors) and the theoretical value. He 

assumed that all these angles were randomly distributed following a rectangular 

distribution between 0° and 90°. Due to the considerable amount of celestial 

bodies, he was not able to perform an exact calculation and he thus needed an 

approximation [Fis]. It was in the process of finding an approximation to this 

problem that Laplace eventually came to form the first versions of the CLT.   

 

2.1 The introduction of characteristic functions 
One important tool in Laplace's way of deducting the central limit theorem was the 

characteristic functions that Laplace introduced 1785. In this work, he started by 

regarding sums of errors. The error distribution he started his work with was a 

simple one; the error could take the values –1 and  +1 with equal probabilities. The 
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sum of 2n errors could then get all the values –2n, -2n+2, ..., -2, 0, 2, ..., 2n-2, 2n 

with probabilities corresponding to the coefficients of the binomial n2)11( + . In his 

invention of the technique of the characteristic functions, he started with this 

simple binomial. Let us follow his work in this: 

 

Laplce started with the binomial n2)11( + , let us denote the middle term of it by ny . 

It is then clear that ny  will be equal to the term independent of ite  in the 

development of the binomial n2itit )ee( −+ .  Furthermore if we multiply this by dt 

and take the integral from t = 0 to t = π this integral will be equal to nyπ . Hence, 

we have: 

 ∫
π −+

π
=

0

n2itit
n dt)ee(1y  

Using the fact that tcos2)ee( itit =+ −  we get an even simpler formula: 

 

 ∫
π

π
=

0

n2
n2

n tdtcos2y  

 

The beauty of it, as Laplace noted, lies in the fact that this can be extended further 

on, to find the middle term of the trinomial n2)111( ++ , the quadrinomial 
n2)1111( +++  etc. Each of these nomials now corresponds to having the 

corresponding amount of error terms (like –1,0,1 for the trinomial). If we 

generalize the calculations and allow the error to get values  (–m, -m+1,..., -1, 0, 

1,..., m-1, m) we get a corresponding m-nomial. By substituting the m-nomial 1:s 

with s:eit  we get n2imtt)1m(it)1m(iimt )ee...1...ee( −+−− ++++++ . The parenthesis 

can again be simplified by co sinus, and we end up with ⎟
⎠

⎞
⎜
⎝

⎛
+ ∑

=

m

1k

tkcos21 . The 
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equal probability of each term is 1)1m2( −+  so we have to multiply the result by 
1)1m2( −+ .  

 

The characteristic functions is thus defined in the following way: 

)e(E)t( itx=ψ  

For the first case we've studied (errors –1,1) we then had: 

 )ee(
2
1)t( itit −+=ψ  

 

In the general case we had: 

 )tkcos21(
1m2

1)t(
m

1k
∑
=

+
+

=ψ  

 

We can now use the characteristic function to calculate the probabilities for 0sn =  

( ns  being the sum of the n possible errors) with the following formula: 

 

 ∫ ∫ ∑
π π

=

+
+π

=ψ
π

==
0 0

n
m

1k
n

n
n dt)tkcos21(

)1m2(
1dt)t(1)0s(P  

 

Laplace arrived to this formula his work and gave the following approximation to 

it: 

 
)1m(nm2

3)0s(P n
+π

≈=  
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2.2 The first versions of the CLT 
The earlier result is the only result (regarding the CLT) that Laplace achieved in 

1785. Considering how close he was to obtaining a general result it is quite 

amazing that he did not do it. Laplace calculated an approximation for )0s(P n =  

but did not do it for any other values of ns . Expanding the result to cover all values 

for ns  must surely have been within his grasp. Laplace did, however, not explore 

any other possible values for ns  than ns = 0. Why he did not do it then, remains 

unknown. No one else took up his work either until Laplace himself returned to it 

in 1810, when he released and "proved" a generalization of his central limit 

theorem. In this paper of 1820, Laplace starts by proving the central limit theorem 

for some certain probability distributions. He then continues with arbitrary discrete 

and continuous distributions. We will here only look at his results for an arbitrary 

discrete distribution.  Laplace's proof is the following [Fis]: 

 

Assume that we have a discrete random variable x that gets the values 

m,1m,...,1m,m −+−− with the corresponding probabilities m1m1mm p,p,...,p,p −+−−  

 

Considering that 

 s,t
isxitx dxee

2
1

δ=
π ∫

π

π−

−  

we get: 

 ∫
π

π−

− ψ
π

== dt)t(e
2
1)js(P nijt

n      (1) 

In this case the characteristic function is: 

 ∑
−=

=ψ
m

mk

ikt
kep)t(  

By inserting the characteristic function into (1) and by expanding the result for ikte  

we obtain: 
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 ∫ ∑ ∑
π

π−
−= −=

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+

π
== dt...kp

2
tkpit1e

2
1)js(P

nm

mk

2
m

mk
k

2

k
ijt

n   (2) 

Let's now take a closer look at the above parenthesis, particularly the natural 

logarithm of it: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+=ψ ∑ ∑

−= −=

m

mk

2
m

mk
k

2

k
n ...kp

2
tkpit1lnnln

 

 

 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+µ+−µ= ∑

−=

...t
2
1kp

2
titn 2

x
22

m

mk
k

2

x

     (3)
 

Here xµ  is the expected value of x. We have used the Taylor series of the natural 

logarithm: 

 ...x
2
1x)x1ln( 2 +−=+  

The variance for x can be defined as 2
x

m

mk

2
k

2
x kp µ−=σ ∑

−=

  

Using that and (3) we can simplify the whole expression (2): 

 

 ∫
π

π−
+σ−µ+−

π
== dt...)tn

2
1itnijtexp(

2
1)js(P 22

xxn  

 

By calculating )sns(P xn =µ−  instead we get: 

∫
π

π−
+σ−−

π
==µ− dt...)tn

2
1istexp(

2
1)sns(P 22

xxn  

  ∫
π

π− ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ

+σ−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ

−
π

= dt
n
istn

2
1exp

n2
sexp

2
1

2

2
x

2
x2

x

2
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  ∫
σπ

σπ− ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

σ
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
σ

−
ππ

= x

x

n

n

2

x
2
x

2

dt
n
isz

2
1exp

n2
sexp

n2
1  

Assuming that s is at the most of the order of n  we get: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ

−
σπ

==µ− 2
x

2

x
xn n2

sexp
n2

1)sns(P  

 

This shows that xn ns µ−  asymptotically approaches the normal distribution 

)n,0(N 2
xσ .  Laplace also remarks that since m is part of the formula only through 

xµ  and xσ , the result should be valid for a discrete distribution with infinite range, 

if xµ  and xσ exist for the distribution. 

 

The proof that Laplace provided for a continuous distribution follows the above 

proof for a discrete distribution quite closely. Laplace just replaces the continuous 

variable y with a discrete variable x such that 
aa

xy
′+

= .  By regarding x, a, and 

a ′  as infinitely large integers, the integrals with y could be treated as sums. 

Laplace then follows the above proof, with some small modifications.   
 
 

3 Poisson's contributions 
 

Of all the contributions to the central limit theorem in the 19th century, the 

contributions by Siméon Denis Poisson would be the most influential on the 

contributions of later authors. Poisson published two articles (1824 and 1829) 

where he discussed the CLT. Poisson's idea was that all procedures in the physical 

world are governed by distinct mathematical laws. In this spirit, he tried to provide 

a more exact mathematical analysis to Laplace's theorem. Poisson's contributions to 

the CLT were twofold [Fis]:  
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i) He provided a more rigorous proof for a continuous variable (thus 

sowing the seeds for the concept of random variables)  

ii) He discussed the validity of the central limit theorem, mainly by 

providing a few counterexamples.  

In his paper, Poisson starts by providing a proof of the CLT for identically 

distributed variables. First for a sum of these and then for a linear combination of 

them He then generalizes his proof to the sum of random variables with different 

distributions. We will here take a look at the general results in the last part of his 

paper: 

 

Let each random variable iY  take values in the interval [a,b] with the continuous 

density )y(F)y(f ii ′= , where )yY(P)y(F ii ≤= . Let β≤≤α ii x,x , (αδ = a and 

βδ = b) be a discrete random variable, let δ be a small interval and set  

 β+αα=δδ= ,...,1,x,)x(fp iixi
 

 

Writing the characteristic function for ix  we get: 

 ∑∑
βδ

αδ=δ

δδ
β

∂=

δδ==ψ
i

i

i

i

i
x

x)/t(i
ii

x

itx
xx e)x(fep)t(     (4) 

 

Setting t = θδ the right side of (4) tends to  

 ∫ θ=θψ
b

a

yi
y dye)y(f)(

i
 

  

When we then want to find the probability distribution for the sum 

n21n Y...YYS +++= , we get the following: 

 ( ) ( )∫ ∏∑
=

− ψ
π

=δ=δ
b

a

n

1i
x

its
i dt)t(e

2
1sxP

i
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From this Poisson continued onwards and finally reached the following result: 

 ( ) ∫ ∏∫
∞

∞−

θ−

=

θ θ
θ
εθ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π

=ε+≤≤ε− d)sin(edye)y(f1cScP ic
n

1i

b

a

yi
in  (5) 

 

Poisson was unable to provide a rigorous proof for this general formula, but he did 

examine the validity of it in the special case of n = 1.   

 

When n = 1 (5) writes to  

 ( ) dy)y(fd)sin(e1cYcP 1

b

a

)cy(i
1 ∫ ∫

∞

∞−

−θ θ
θ
εθ

π
=ε+≤≤ε−   (6) 

 

With the help of the well known formula: 

 
⎩
⎨
⎧

<−
>

=
π ∫

∞

0k,1
0k,1

dx
x

)kxsin(2
0

 

Poisson showed that  

 

 
] [
] [⎩

⎨
⎧

ε+ε−∉
ε+ε−∈π

=θ
θ
εθ

∫
∞

∞−

−θ

c,cy,0
c,cy,

d)sin(e )cy(i     (7) 

 

With the help of (7) we then get the final result: 

 ( ) ∫
ε+

ε−
=ε+≤≤ε−

c

c 11 dy)y(fcYcP  

This concludes the proof. 
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Poisson's version of the CLT can be summarised in the following way: Let 

n1 Y,...,Y  be independent random variables with density functions vanishing 

beyond the fixed interval [a,b]. If for the absolute values jρ  of the characteristic 

functions of jY  ( ji
jj e)( ϕρ=θψ ), there exists a function )(r α  independent of j 

01)(r0 ≠α∀≤α≤  such that )(rj α≤ρ , then for arbitrary γ′γ, : 

 

 ∫∑
∑ γ′

γ

−

π
≈⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
γ′≤

−
≤γ due1

)Y(Var2

)EYY(
P

2u

i

ii  

  

The approximation gets better the larger n is and the difference between the left and 

right side becomes "infinitely small" with infinite n as Poisson explained [Fis]. 

 

As for Laplace, the main purpose of the CLT for Poisson was to be a tool in 

classical probability calculations, not so much to be a mathematical theorem in 

itself. Poisson did therefore not explicitly formulate any conditions for the central 

limit theorem to hold. It seems clear from his proofs and examples that he assumed 

the variances of the components of the sum to be bounded so that the variance of 

the sum would be of the order n. He does not say this explicitly though. He did, 

however, discuss a few counterexamples where the CLT does not hold.  

 

One example of where the CLT does not hold are so called Cauchy-distributed 

variables where the probability density takes the following form: 

)x1(
1)x(f 2+π

=  

 

By inserting this into (5) we get 
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( ) ⎟
⎠
⎞

⎜
⎝
⎛

ε−+
ε

π
=ε+≤≤ε− 222n cn

n2arctan1cScP  

 

Hence, an approximate normal distribution cannot be obtained even with a large n. 

 

4 Further development in the 19th century 
 

Towards the end of the 19th century, mathematics was starting to change. The 

abstraction of mathematics was constantly taking place and the mathematical 

discussion was turning increasingly from computational mathematics to a more 

fundamental analysis, to "pure" mathematics. This had a big impact on probability 

theory as it had been considered more as "common sense" than a rigorous 

mathematical theory. Probability theory had been used where needed, but there had 

not been any need for rigorous proofs, as is the case with Laplace's first version of 

the CLT. For Laplace it had been enough that his theorem worked in practice and 

he didn't feel a need to turn it into mathematics since probability theory wasn't 

considered as such. This was about to change though. During this time, there were 

several attempts to give more "rigorous" proofs to the central limit theorem, the 

most important ones being by Bessel, Dirichlet, Cauchy, Ellis  [Fis]. We will here 

look at a few of these attempts. 

 

4.1 Dirichlet and Bessel 
Dirichlet and Bessel mostly followed the footsteps of Laplace and Poisson in their 

proofs, but they introduced the so called "discontinuity factor" in their proofs. With 

the help of the discontinuity factor, they were able to prove Poisson's equation (5) 

for an arbitrary value of n, which Poisson himself had not been able to do.  

 

Dirichlet's discontinuity factor states that: 
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⎩
⎨
⎧

<
>

=
π ∫

∞

1k,1
1k,0

xdxcos
x

)kxsin(2
0

 

 

With the use of this, both Dirichlet and Bessel we're able to prove Poisson's 

formula (5) for an arbitrary n. They followed different paths to achieve the proofs, 

but the principle remains the same. Bessel also pointed out that Poisson did in fact 

use the same discontinuity factor (although in a slightly different form) when he 

proved the formula (5) for n = 1.  

 

Dirichlet also tried to estimate the error of the approximation. This attempt was not 

a very successful one and his technique differed heavily from modern techniques. It 

was, however, the first attempt to try to estimate the error of the approximation. 

Dirichlet had estimated the errors for other non-probabilistic approximations before 

and he showed that those same techniques could be applied to probability theory as 

well as they had been to "pure" mathematics. 

 

4.2 Cauchy's version of the theorem 
Cauchy was one of the first mathematicians to seriously consider probability theory 

as "pure" mathematics. He contributed in several different fields of mathematics 

and came up with a new way of proving the CLT. Cauchy's proof follows a 

different line compared to the previous proofs. He first found an upper bound to the 

difference between the exact value and the approximation and then specified 

conditions for this bound to tend to zero.  

 

Cauchy gives his proof for independent identically distributed variables 

1y ... ny with a symmetric density f(y), finite support [-a, a], variance  02 >σ  and a 

characteristic function ψ(θ). He then considers the distribution of a weighted mean 
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 ∑
=

=
n

1i
iin ywz    1w

n

1i
i =∑

=

 

 

By following the lines of Poisson's proofs he gets: 

 ( ) ∫
∞

θ
θ
θ

θψθψ
π

=<<−=
0 n1n d)hsin()w()...w(2hzhPP  

 

If we assume that nz  is asymptotically normal with zero mean and the variance 

∑
=

σ=β
n

1i

2
i

22 w  (as it is according to the central limit theorem) then the 

corresponding probability can be written as 

 

 ∫
∞ θβ− θ

θ
θ

π
=Φ

0

2/ d)hsin(e2 22

 

 

Cauchy then tried to find an upper bound for Φ−P  and specify conditions for this 

bound to tend to zero. In his proof, he had to divide the interval into three parts: 

( ) ( ) ( )Φ−Φ+Φ−+−=Φ− kkkk PPPP   

and study these parts separately. He thus got: 

 2/k
22

k

2/
k

2222

e
k
12d)hsin(e2 β−

∞
θβ−

βπ
<θ

θ
θ

π
=Φ−Φ ∫  

 2/k
22

k

2/~

k

22

22

e
k
12d)hsin(e2PP γβ−

∞ γθβ−

γβπ
<θ

θ
θ

π
=− ∫  

where 2
j

22 ))w((maxk1
1

σ+
=γ  

For the last part, Cauchy stated that: 
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 ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

π
α

<θ
θ
θ

−
π

=Φ− ∫ θβ−γθβ−

3
hk1

3
khln32d)hsin(ee2P

22k

0

2/2/~
kk

2222

 

where 
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−=α σ+

βσ
−β 3

j
22

2
l

422
2

j
242

))w(max(k24
))w(max(k

))w(max(ak
8
1

e1,emax  

He finally concluded that if k is chosen so that 4/32/1 nkn <<  then the three parts 

tend to zero for ∞→n and thus Φ→P [Hal].  
 
 

5 The second chapter in the history of the central 
limit theorem 

 

Cauchy's proof finished what is called the first period of the central limit theorem 

(1810-1853). The proofs presented in this period were unsatisfactory in three 

respects [Hal]:   

1. The theorem was not proved for distributions with infinite support. 

2. There were no explicit conditions, in terms of the moments, under which 

the theorem would hold. 

3. The rate of convergence for the theorem was not studied. 

 

These problems were eventually solved by Russian mathematicians, between 1870 

and 1910. Three probabilistic mathematicians are normally credited for this, 

namely Chebyshev, Markov and Liapounov; the so-called "St. Petersburg School". 

In the literature, there is normally no mention of others although it seems clear that 

there were other Russian mathematicians involved in working with the same 

problems, e.g. P.A. Nekrosov and I.V. Sleshinsky. There seems, however, to have 

been quite a lot of controversy between the "St. Petersburg School" and the others 

[Sen]. We will here focus on the achievements of the "St. Petersburg School" since 

these mathematicians are generally considered as having contributed the most to 

the central limit theorem.  
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5.1 Chebyshev's and Markov's proof of the central 
limit theorem 

Chebyshev's paper in 1887 is generally considered the beginning of rigorous proofs 

for the central limit theorem. In his paper, Chebyshev states the following [Sen]:  

 

Let 1z , 2z , 3z , ..., be independent random variables each described by probability 

densities. If 

i) E ( iz ) = 0  ∀i 

ii) C)z(E k
i ≤   ∀i,  k ≥ 2 

where C is a constant independent of i and k; then as n → ∞  

 dxe
2
1)t

B
S

t(P
t

t

x
2
1

n

n
2

∫
′ −

π
→′<<  

where ∑
=

=
n

1i
in zS  and ∑

=

=
n

1i
i

2
n )z(VarB  

 

In his proof, which is incomplete, Chebyshev used the "method of moments", 

which was developed earlier by him. It was later simplified and completed by 

Markov, who also completed Chebyshev's proof of the CLT.  

 

In 1898, after Chebyshev's proof, Markov stated that: "a further condition needs to 

be added in order to make the theorem correct". He first proposed the following 

condition: 

 

iii) n/B2
n  is uniformly bounded away from 0 
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Later Markov replaced the condition with: 

 

     iiia)       )z(E 2
n  is bounded from 0 as n → ∞ 

 

After Liapounov's proof of the CLT with characteristic functions in 1901, Markov 

worked hard to achieve the same level of generality with the method of moments. 

He finally succeeded with this in 1913 when he presented a paper that provided a 

rigorous proof of the CLT under Liapounov's condition by using the method of 

moments. 
 

5.2 Liapounov's theorem 
Liapounov was, as Markov was, a student of Chebyshev and thus a part of the "St 

Petersburg School". Liapounov wanted to introduce rigorous proofs to probability 

theory and he was successful in that. In his proof of the CLT, he did not follow 

Chebyshev and Markov in their use of the method of moments but he followed 

Laplace's idea and used characteristic functions instead. Liaupounov's proof, 

published in 1901, is considered the first "real" rigorous proof of the CLT. Let us 

take a look at the theorem as stated by Liapounov [Usp]: 

 

Let 1x , 2x , 3x ,..., nx  be independent random variables with the following 

properties: 

 

E( )xi = 0  ∀ i 

∞≤k
i |x|E   ∀i,  k ≥ 2 

 

If there exists a δ > 0 such that 
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0
B

xE
n

2
n

n

1i

2
i

⎯⎯ →⎯ ∞→
δ+

=

δ+∑
 

then  

∫ ∞−

−

π
→⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
<

t u
2
1

n

n due
2
1t

B
SP

2

 

 

After this part, Liapounov's proof follows Laplace, by using characteristic 

functions. In his proof, however, he uses a fundamental lemma that is the key to the 

simplicity and rigorousness of his proof: 

 

Let ns  be a variable depending on an integer n, with the mean 0 and variance 1. If 

its characteristic function 

 )e(E)t( tis
n

n=ψ  

converges to 2
t2

e
−

 (the characteristic function of the normal distribution) uniformly 

in any given finite interval (-k,k) then the distribution function )t(Fn  of ns  tends 

uniformly to )t(Φ for all t.  

 

Liapounov did not explicitly separate this fundamental lemma in his proof, but it is 

implicitly contained therein. Several other important contributors to the CLT, like 

Lindeberg and Lévy, used this lemma in their improvements of the CLT [Usp]. 
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6 The last chapter in the history of the central limit 
theorem 

  
The so-called 3rd and last chapter in the history of the central limit theorem 1920-

1937, begins with Lindeberg's proof of it and Lévy's and Feller's proof that added 

necessary conditions to the theorem. 

 

6.1 The Lindeberg condition 
In 1922, Lindeberg published an elementary proof of the CLT. Lindeberg's proof is 

very simple and applies to Euclidean valued and even Hilbert valued random 

vectors as well as random variables. Lindeberg's proof was also the basis of both 

Feller's and Lévy's work on the same problem. Let's have a look at Lindeberg's 

theorem [Cam]: 

 

Let the variables ix  be independent random variables with the expectations zero 

and variances 2
iσ . Let ns be the standard deviation of the sum S, ∑σ= 2

i
2
ns . If 

 

 0IxE
s
1

i s
x

2
i2

n n
i

→
⎭
⎬
⎫

⎩
⎨
⎧

∑
⎥⎦
⎤

⎢⎣
⎡ ε>

 

then 

 )1,0(N
s
S

n

→  

The above condition is generally called the Lindeberg condition [Gne]. In his 

proof, Lindeberg derived a limit for )x()x(Fsup
x

Φ−  (where )x(Φ  is the normal 

probability distribution) in terms of the third moment [Cam, GnK]. The same proof 
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can be carried out with characteristic functions as well, as it often is presented 

today. Lindeberg's method of proof did remain rather unused throughout the first 

half of the 20th century and it was not re-used before Trotter's paper in 1959. 

Trotter's paper did not make Lindeberg's method very popular either, but when 

limit theorems started to be created for infinite-dimensional spaces, the strength of 

Lindeberg's method was finally recognised. Lindeberg's method was easily 

transferable to infinite-dimensional spaces whereas the usage of characteristic 

functions was not. Today Lindeberg's condition is used in most cases where 

convergence to a normal distribution is considered with non-identically distributed 

variables [Pau].  

 

The strength of Lindeberg's method lies mainly in two points:  

1. It can be applied in a very general context  

2. It takes the rate of convergence in the limit theorem under consideration.  

It is appropriate to note that Lindeberg's method did not give the optimal order of 

the rate of convergence, even in the case of i.i.d. real-valued summands with finite 

third moment it gives the order n [Pau]. 

 

With Lindeberg's proof, there was a rigorous proof for the CLT that provided the 

sufficient conditions for the CLT. There were, however, no proofs for the necessary 

conditions of the CLT. As Poisson had shown already in 1824, the approximation 

to a normal distribution did not always hold for arbitrary independent variables. 

This lack was partly remedied by Lévy and Feller in 1935 and 1937. 

 

6.2 Feller's theorem 
Feller's paper of 1935 gives the necessary and sufficient conditions for the CLT, 

but the result is somewhat restricted. Feller considered an infinite sequence ix  of 

independent random variables. He then gave conditions for na  and nc  such that  
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 ( )nn
n

cS
a
1

−  

where ∑
=

=
n

1i
in xS  tends to N(0,1). 

Feller, however, restricted his treatment to the case where the na , if they exist, 

must be such that for each k the variables kx / na  tend to zero in probability. 

Feller's conditions for na  and nc  are valid under this restriction, so Feller did in a 

sense give the final solutions to the CLT, but since he posed this restriction and 

because he only treated normed sums, it can not be considered the final solution to 

the CLT. Feller's theorem is often called the Lindeberg-Feller theorem as it uses the 

Lindeberg condition [Rao]. 

 

6.3 Lévy's theorem 
Lévy proved Lindeberg's condition in 1925, using characteristic functions. He did, 

however, consider Lindeberg's proof to be simpler and superior to his own [Cam]. 

He published several papers related to the central limit theorem between 1925 and 

1930, mostly using characteristic functions in his proofs. After 1930 he, however, 

avoided using characteristic functions, and in his 1935 paper, he does not use 

characteristic functions at all. Lévy's 1935 paper was presented only a few months 

after Feller's and despite the fact that the papers treated the same problem, both 

Feller and Lévy deny having had any previous contact. In his paper from 1935, 

Lévy proved several things related to the central limit theorem [Cam]: 

i) He gave necessary and sufficient conditions for the convergence of 

normed sums of independent and identically distributed random 

variables to a normal distribution 

ii) Lévy also gave the sufficient and necessary conditions for the general 

case of independent summands 
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iii) He also tried to give the necessary and sufficient conditions for 

dependent variables, martingales. 

 

There were, however, some problems with Lévy's proofs. Lévy's proof of the 

necessary conditions for the martingale case was not quite satisfactory and did not 

stand a test of rigorousness. His proofs of the necessary and sufficient conditions 

for the general case of independent variables were correct, but his proofs relied on 

a hypothetical lemma, that had not yet been proved (as did Fellers proof). The 

lemma is the following: 

 

"If the sum S = X + Y of two independent random variables (X and Y) has a 

normal distribution then so do X and Y."  

 

Lévy's whole proof relies on this lemma and was thus not quite satisfactory at the 

time being presented. The following year (1936), Cramér proved the lemma (as a 

theorem) and the matter was settled. With help of the same theorem the use of 

normed sums could be shown to be valid and both Lévy's and Feller's theorems 

where thus generally applicable. Both Feller and Lévy returned and refined their 

proofs in 1937 after they could use Cramérs result. The CLT was thus proved with 

both necessary and sufficient conditions [Cam] and the final chapter in the history 

of the CLT could be closed. 

 

7 Conclusions 
 

In this study, we have closely followed the history of the CLT. We started by 

discussing Laplace and his need for approximating the distribution of the sums of 

errors. We followed Laplace's reasoning quite closely, in how he first discovered 

the CLT. We then followed how various contributors contributed to the CLT, how 
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Poisson gave examples of distributions that cannot be approximated by the CLT 

and how he provided a more rigorous proof of the continuous case. We then saw 

how Dirichlet and Bessel eventually proved Poisson’s theorem and we saw Cauchy 

define the first upper bound for the difference between the distribution of the sum 

and the normal distribution. After this first chapter, the Russian mathematicians 

provided the first rigorous proofs of the CLT. First Chebyshev and Markov with 

the method of moments. After their proof, Liapounov proposed the Liapounov 

condition and used characteristic functions again in his proof. After the Russians, it 

was Lindeberg who gave had the final word regarding the sufficient conditions by 

proposing the Lindeberg condition. The case was not closed, however, as 

Lindeberg had not provided necessary conditions for the CLT. In the end, Feller 

and Lévy provided the necessary conditions for the CLT that were eventually 

rigorously proved by Cramér. We have thus arrived more or less, to where the CLT 

stands today. The Lindeberg condition has been improved somewhat [Cram] and 

the CLT has been given sufficient and necessary conditions for various dependent 

variables as well, but the basic principles of Lindeberg, Lévy and Feller still 

remains the ones used to date. 
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