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Random Processes

B 19.1 BASIC DEFINITIONS

In the earlier sections a random variable X was defined as a function that maps every

outcome ji of points in the sample space S to a number X(ji) on the real line R. A

random process X(t) is a mapping that assigns a time function X(t,ji) to every outcome

ji of points in the sample space S. Alternate names for random processes are stochastic

processes and time series. More formally, a random process is a time function assigned

for every outcome j [ S according to some rule X(t,j), t [ T , j [ S, where T is an

index set of time. As in the case of a random variable, we suppress j and define a

random process by X(t). If the index set T is countably infinite, the random process is

called a discrete-time process and is denoted by Xn.

Referring to Fig. 19.1.1, a random process has the following interpretations:

1. X(j,t1) is random variable for a fixed time t1.

2. X(ji,t) is a sample realization for any point ji in the sample space S.

3. X(ji,t2) is a number.

4. X(j,t) is a collection or ensemble of realizations and is called a random process.

An important point to emphasize is that a random process is a finite or an infinite ensemble

of time functions and is not a single time function.

Example 19.1.1 A fair coin is tossed. If heads come up, a sine wave x1(t) ¼ sin(5pt) is

sent. If tails come up, then a ramp x2(t) ¼ t is sent. The resulting random process X(t) is an

ensemble of two realizations, a sine wave and a ramp, and is shown in Fig. 19.1.2. The

sample space S is discrete.

Example 19.1.2 In this example a sine wave is in the form X(t) ¼ A sin(vtþF), where

F is a random variable uniformly distributed in the interval (0, 2p). Here the sample space

is continuous, and the sequence of sine functions is shown in Fig. 19.1.3.
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FIGURE 19.1.1

FIGURE 19.1.2

FIGURE 19.1.3
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Distribution and Density Functions. Since a random process is a random variable for

any fixed time t, we can define a probability distribution and density functions as

FX(x; t) ¼ P(j, t: X(j; t) � x) for a fixed t (19:1:1)

and

fX(x; t) ¼
@

@x
FX(x; t) ¼ lim

Dx!0

FX(xþ Dx; t)� FX(x; t)

Dx

¼ lim
Dx!0

P(x , X(t) � xþ Dx) (19:1:2)

These are also called first-order distribution and density functions, and in general,

they are functions of time.

Means and Variances. Analogous to random variables, we can define the mean of a

random process as

mX(t) ¼ E ½X(t)� ¼

ð1

�1

xfX(x; t)dx (19:1:3)

and the variance as

s2
X(t) ¼ E ½X(t)� mX(t)�

2
¼ E ½X2(t)� � m2

X(t)

¼

ð1

�1

½x� mX(t)�
2 fX(x; t)dx

(19:1:4)

where

E½X2(t)� ¼

ð1

�1

x2 fX(x; t)dx (19:1:5)

Since the density is a function of time, the means and variances of random pro-

cesses are also functions of time.

Example 19.1.3 We shall now find the distribution and density functions along with the

mean and variance for the random process of Example 19.1.1 for times t ¼ 0, 1
2
, 7
10
:

t ¼ 0, x1(0) ¼ 0, x2(0) ¼ 0

At t ¼ 0 the mapping diagram from the sample space to the real line is shown in

Fig. 19.1.4a along with the corresponding distribution and density functions.

The mean value is given by mX(0) ¼ 0; 1
2
þ 0 � 1

2
¼ 0. The variance is given by

s2
X(0) ¼ (0� 0)2 1

2
þ (0� 0)2 1

2
¼ 0:

t ¼
1

2
, x1

1

2

� �
¼ 1, x2

1

2

� �
¼

1

2

At t ¼ 1
2
the mapping diagram from the sample space to the real line is shown in

Fig. 19.1.4b along with the corresponding distribution and density functions.

The mean value is given by mX
1
2

� �
¼ 1

2
� 1
2
þ 1 � 1

2
¼ 3

4
¼ 0:75:
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The variance is given by s2
X

1
2

� �
¼ 1

2
� 3

4

� �21
2
þ 1� 3

4

� �21
2
¼ 1

16
¼ 0:0625:

t ¼
7

10
, x1

7

10

� �
¼ 1, x2

7

10

� �
¼

7

10

At t ¼ 7
10

the mapping diagram from the sample space to the real line is shown in

Fig. 19.1.4c along with the corresponding distribution and density functions.

The mean value is given by mX
7
10

� �
¼ 7

10
� 1
2
� 1 � 1

2
¼ � 3

20
¼ �0:15

The variance is given by s2
X

7
10

� �
¼ 7

10
þ 3

20

� �21
2
þ �1þ 3

20

� �2 1
2
¼ 289

400
¼ 0:7225:

Example 19.1.4 A random process, given by X(t) ¼ A sin(vt), is shown in Fig. 19.1.5,

where A is a random variable uniformly distributed in the interval (0,1].

FIGURE 19.1.4
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The density and distribution functions of A are

fA(a) ¼
1, 0 , a � 1

0, otherwise

�
FA(a) ¼

0, a � 0

a, 0 , a � 1

1, a . 1

2
4

We have to find the distribution function FX (x; t). For any given t, x ¼ asin(vt) is an

equation to a straight line with slope sin(vt), and hence we can use the results of Examples

12.2.1 and 12.2.2 to solve for FX (x; t). The cases of sin(vt) . 0 and sin(vt) , 0 are shown

in Fig. 19.1.6.

Case 1: sin(vt) . 0. There are no points of intersection on the a axis for x � 0, and

hence FX(x; t) ¼ 0. For 0 , x � sin(vt) we solve x ¼ a sin(vt) and obtain

a ¼ x=½sin(vt)�. The region Ia for which a sin(vt) � x is given by Ia ¼ {0 , a �

FIGURE 19.1.5

FIGURE 19.1.6
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x=½sin(vt)�} (Fig. 19.1.6). Thus

FX(x; t) ¼ FA

x

sin(vt)

� �
� FA(0) ¼ FA

x

sin(vt)

� �
¼

x

sin(vt)

Finally for x . sin(vt), the region Ia for which asin(vt) � x, is given by

Ia ¼ f0 , a � 1g and FX(x; t) ¼ 1. Thus, for sin(vt) . 0, we have

FX(x; t) ¼

0; x � 0
x

sin(vt)
, 0 , x � sin(vt)

1, x . sin(vt)

2
64

Case 2: sin(vt) , 0. The region Ia for which x . 0 is given by Ia ¼ f0 , a � 1g, and

hence FX(x; t) ¼ 1. For 2jsin(vt)j , x � 0, we solve x ¼ –ajsin(vt)j and obtain

a ¼ ½x=(� j sin(vt)j)�. The region Ia for which –a jsin(vt)j � x is given by

Ia ¼
x

�j sin(vt)j
, a � 1

� �

(Fig. 19.1.6). Thus,

FX(x; t) ¼ FA(1)� FA

x

�j sin(vt)j

� �
¼ 1�

x

�j sin(vt)j

Finally, for x � – jsin(vt)j, the region Ia for which –a jsin(vt)j � x is given by

Ia ¼ f1 , a � 1g and FX (x; t) ¼ 0. Thus, for sin(vt) , 0, we have

FX(x; t) ¼

0, x � �j sin(vt)j

1�
x

�j sin(vt)j
, �j sin(vt)j , x � 0

1, x . 0

2
64

Case 3: sin(vt) ¼ 0. The region Ia for which x . 0 is given by Ia ¼ f0 , a � 1g and

FX (x; t) ¼ 1. For x � 0, Ia ¼ 1 and FX (x; t) ¼ 0. Thus, for sin(vt) ¼ 0, we have

FX(x; t) ¼
0, x � 0

1, x . 0

�

Example 19.1.5 We shall now find the distribution and density functions along with the

mean and variance for the random process of Example 19.1.2 and see how this process

differs from the previous ones.

We are given that X(t) ¼ A sin(vtþF), where A is a constant and fF(f) ¼ 1/2p in

the interval (0, 2p) and we have to find fX (x; t). We will solve this problem by (1) finding

the distribution FX(x; t) and differentiating it, and (2) by direct determination of the

density function.

1. Determination of Distribution Function FX(x; t). The distribution function for F

is given by FF(f) ¼ (f=2p), 0 , f � 2p. The two solutions for x ¼ A

sin(vtþ f) are obtained from the two equations:

sin(vt þ f1) ¼
x

A
and sin(p� vt � f2) ¼

x

A
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Hence the solutions are given by

f1 ¼ sin�1 x

A

� 	
� vt and f2 ¼ p� sin�1 x

A

� 	

and are shown in Fig. 19.1.7.

For x � –A, there are no points of intersection and hence FX(x; t) ¼ 0. For

2A , x � A, the set of points along the f axis such that A sin(vtþ f) � x is

(0, f1] < (f2, 2p]. Hence FX(x; t) is given by

FX(x; t) ¼ FF(f1)� FF(0)þ FF(2p)� FF(f2)

¼
1

2p
sin�1 x

A

� 	
� vt � 0þ 2p� p� sin�1 x

A

� 	
� vt

h in o

¼
1

2p
2 sin�1 x

A

� 	
þ p

n o
¼

1

p
sin�1 x

A

� 	
þ
1

2
, �A , x � A

Finally, for x . A, the entire curve A sin(vtþ f) is below x, and FX(x;t) ¼ 1.

2. Determination of Density Function fX(x; t)

(a) The two solutions to x ¼ A sin(vtþ f) have been found earlier.

(b) The absolute derivatives j@x=@fjjf1
and j@x=@fjjf2

are given by

@x

@f
















f1

¼ A cos(vt þ f1) ¼ A cos vt þ sin�1 x

A

� 	
� vt

h i

¼ A cos sin�1 x

A

� 	h i
¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � x2

p

A
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � x2

p

and

@x

@f
















f2

¼ A cos(vt þ f2) ¼ A cos vt þ p� sin�1 x

A

� 	
� vt

h i








¼ A cos p� sin�1 x

A

� 	h i






 ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � x2

p

A
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � x2

p

FIGURE 19.1.7
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(c) With the two solutions for x, the density function fX(x; t) is given by

Eq. (12.3.6):

fX(x; t) ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 � x2
p

1

2p
þ

1

2p

� �
¼

1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � x2

p , �A , x � A

Integration of fX (x; t) gives the distribution function FX(x; t)

FX(x; t) ¼

0, x � �A
1

p
sin�1 x

A

� 	
þ
1

2
, �A , x � A

1, x . A

2
64

3
75

and these two solutions are exactly the same as before. For this random

process, we find that the density and the distribution functions are both

independent of time. For A ¼ 1, they become

fX(x; t) ¼
1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p , �1 , x � 1

FX(x; t) ¼

0, x � �1

sin�1 (x)

p
þ

1

2
, �1 , x � 1

1, x . 1

2
664

3
775

and these functions are shown in Fig. 19.1.8. Since fX (x) has even symmetry,

the mean value is 0 and the variance is obtained from

s2
X ¼

ð1

�1

x2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dx ¼
1

2

The value of s ¼ +1=
ffiffiffi
2

p
is also shown in Fig. 19.1.8.

Later we will discuss random processes whose density and distribution functions are

independent of time.

FIGURE 19.1.8
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Higher-Order Distribution Functions

If t1 and t2 are different times, then X1 ¼ X(t1) and X2 ¼ X(t2) are two different

random variables as shown in Fig. 19.1.9.

A second-order distribution function FX(x1, x2; t1, t2) for X1 and X2 can be defined as

FX(x1, x2; t1, t2) ¼ P½X(t1) � x1, X(t2) � x2� (19:1:6)

and the second-order density function fX(x1, x2; t1, t2) as

fX(x1, x2; t1, t2) ¼
@2

@x1@x2
FX(x1, x2; t1, t2) (19:1:7)

Similarly, if t1, . . . , tn are different times, then an nth-order distribution function is

defined as

FX(x1, . . . , xn; t1, . . . , tn) ¼ P½X(t1) � x1, . . . ,X(tn) � xn� (19:1:8)

and the nth-order density function as

fX(x1, . . . , xn; t1, . . . , tn) ¼
@n

@x1 � � � @xn
FX(x1, . . . , xn; t1, . . . , tn) (19:1:9)

A random variable is completely defined if its distribution function is known.

Similarly, a random process X(t) is completely defined if its nth-order distribution is

known for all n. Since this is not feasible for all n, a random process in general cannot

be completely defined. Hence, we usually restrict the definition to second-order distri-

bution function, in which case it is called a second-order process.

In a similar manner, we can define a joint distribution between two different random

processes X(t) and Y(t) (Fig. 19.1.10) as given below, where the joint second-order distri-

bution function FXY (x1, y2; t1, t2) for X(t1) and Y(t2) is defined by

FXY (x1, y2; t1, t2) ¼ P½X(t1) � x1, Y(t2) � y2� (19:1:10)

and the joint density function fXY (x1, y2; t1, t2) as

fXY (x1, y2; t1, t2) ¼
@2

@x1 @y2
FXY (x1, y2; t1, t2) (19:1:11)

FIGURE 19.1.9
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The joint nth-order distribution function FXY (x1, y2; t1, t2) for X(t) and Y(t) is defined by

FXY (x1, . . . , xn : y1, . . . , yn; t1, . . . , tn)

¼ P½X(t1) � x1, . . . ,X(tn) � xn : Y(t1) � y1, . . . , Y(tn) � yn� (19:1:12)

and the corresponding nth-order density function, by

fXY (x1, . . . , xn : y1, . . . , yn; t1, . . . , tn)

¼
@2n

@x1 � � � @xn@y1 � � � @yn
FXY (x1, . . . , xn : y1, . . . , yn; t1, . . . , tn) (19:1:13)

Second Order Moments

In Eqs. (19.1.3) and (19.1.4) defined mean and variance for a random process. The

second moment of a random process has also been defined in Eq. (19.1.5). Since X(t1)

and X(t2) are random variables, various types of joint moments can be defined.

Autocorrelation. The autocorrelation function (AC) RX (t1, t2) is defined as the

expected value of the product X(t1) and X(t2):

RX(t1, t2) ¼ E½X(t1)X(t2)� ¼

ð1

�1

ð1

�1

x1x2 fX(x1, x2; t1, t2)dx1 dx2 (19:1:14)

By substituting t1 ¼ t2 ¼ t in Eq. (19.1.14), we can obtain the second moment or

the average power of the random process:

RX(t) ¼ E ½X2(t)� ¼

ð1

�1

x2fX(x; t)dx (19:1:15)

Autocovariance. The autocovariance function (ACF) CX (t1, t2) is defined as the

covariance between X(t1) and X(t2):

CX(t1, t2)¼ E ½(X(t1)�mX(t1))(X(t2)�mX(t2))�

¼

ð1

�1

ð1

�1

(x1 �mX(t1))(x2 �mX(t2)) fX(x1,x2; t1, t2)dx2 dx1

¼ E½X(t1)X(t2)� �mX(t1)mX(t2) (19:1:16)

FIGURE 19.1.10
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Thus, from Eqs. (19.1.15) and (19.1.16) the interrelationships between AC and

ACF are

CX(t1, t2)¼ RX(t1, t2)�mX(t1)mX(t2)

RX(t1, t2)¼ CX(t1, t2)þmX(t1)mX(t2)
(19:1:17)

Normalized Autocovariance. The normalized autocovariance function (NACF)

rX (t1, t2) is the ACF normalized by the variance and is defined by

rX(t1, t2) ¼
CX(t1, t2)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
X(t1)s

2
X(t2)

p ¼
CX(t1, t2)

sX(t1)sX(t2)
(19:1:18)

The NACF finds wide applicability in many problems in random processes, particu-

larly in time-series analysis.

The following definitions pertain to two different random processes X(t) and Y(t):

Cross-Correlation. The cross-correlation function (CC) RXY(t1, t2) is defined as the

expected value of the product X(t1) and Y (t2):

RXY (t1, t2) ¼ E½X(t1)Y(t2)� ¼

ð1

�1

ð1

�1

x1y2 fXY (x1, y2; t1, t2)dy2 dx1 (19:1:19)

By substituting t1 ¼ t2 ¼ t in Eq. (19.1.19), we can obtain the joint moment

between the random processes X(t) and Y(t) as

RXY (t) ¼ E½X(t)Y(t)� ¼

ð1

�1

ð1

�1

xy fXY (x, y; t)dydx (19:1:20)

Cross-Covariance. The cross-covariance function (CCF) CXY(t1, t2) is defined as the

covariance between X(t1) and Y(t2):

CXY (t1, t2) ¼ E½(X(t1)� mX(t1))(Y(t2)� mY (t2))�

¼

ð1

�1

ð1

�1

(x1 � mX(t1))(y2 � mY (t2)) fXY (x1,y2; t1, t2)dy2 dx1

¼ E½X(t1)Y(t2)� � mX(t1)mY (t2) (19:1:21)

Thus, from Eqs. (19.1.19) and (19.1.21) the interrelationships between CC and

CCF are

CXY (t1, t2) ¼ RXY (t1, t2)� mX(t1)mY (t2)

RXY (t1, t2) ¼ CXY (t1, t2)þ mX(t1)mY (t2)
(19:1:22)

Normalized Cross-Covariance. The normalized cross-covariance function (NCCF)

rXY(t1, t2) is the CCF normalized by the variances and is defined by

rXY (t1, t2) ¼
CXY (t1, t2)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
X(t1)s

2
Y (t2)

p ¼
CXY (t1, t2)

sX(t1)sY (t2)
(19:1:23)

Some Properties of X(t) and Y(t)

Two random processes X(t) and Y(t) are independent if for all t1 and t2

FXY (x, y; t1, t2) ¼ FX(x; t1)FY (y; t2) (19:1:24)
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They are uncorrelated if

CXY (t1, t2) ¼ RXY (t1, t2)� mX(t1)mY (t2) ¼ 0

or

RXY (t1, t2) ¼ mX(t1)mY (t2) for all t1 and t2 (19:1:25)

They are orthogonal if for all t1 and t2

RXY (t1, t2) ¼ 0 (19:1:26)

Example 19.1.6 This example is slightly different from Example 19.1.4. A random

process X(t) is given by X(t) ¼ A sin(vtþ f) as shown in Fig. 19.1.11, where A is a uni-

formly distributed random variable with mean mA and variance sA
2. We will find the mean,

variance, autocorrelation, autocovariance, and normalized autocovariance of X(t).

Mean:

E½X(t)� ¼ mX(t) ¼ E ½A sin(vt þ f)� ¼ mA sin(vt þ f)

Variance:

var½X(t)� ¼ s2
X(t) ¼ E½A2 sin2 (vt þ f)� � m2

A sin
2 (vt þ f)

¼ {E ½A2� � m2
A} sin

2 (vt þ f) ¼ s2
A sin

2 (vt þ f)

Autocorrelation. From Eq. (19.1.14) we have

RX(t1, t2) ¼ E½X(t1)X(t2)� ¼ E ½A2� sin(vt1 þ f) sin(vt2 þ f)

¼
1

2
E ½A2�{cos½v(t1 � t2)� � cos½v(t1 þ t2)þ 2f�}

FIGURE 19.1.11
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Autocovariance. From Eq. (19.1.16) we have

CX(t1, t2) ¼ RX(t1, t2)� mX(t1)mX(t2)

¼ E½A2� sin(vt1 þ f) sin(vt2 þ f)� m2
A sin(vt1 þ f) sin(vt2 þ f)

¼ s2
A sin(vt1 þ f) sin(vt2 þ f)

¼
1

2
s2
A{cos½v(t1 � t2)� � cos½v(t1 þ t2)þ 2f�}

Normalized Autocovariance. From Eq. (19.1.18) we have

rX(t1, t2) ¼
CX(t1, t2)

sX(t1)sX(t2)
¼

s2
A sin(vt1 þ f) sin(vt2 þ f)

s2
A sin(vt1 þ f) sin(vt2 þ f)

¼ 1

Example 19.1.7 A random process X(t) with k changes in a time interval t, and its prob-

ability mass function is given by p(k; l) ¼ e�lt½(lt)k=k!�. It is also known that the joint

probability Pfk1 changes in t1, k2 changes in t2g is given by

P{k1 changes in t1, k2 changes in t2}

¼ P{k1 changes in t1, (k2 � k1) changes in (t2 � t1)}

¼ P{k1 changes in t1}P{(k2 � k1) changes in (t2 � t1)}

¼ e�lt1
(lt1)

k1

k1!
e�l(t2�t1)

½l(t2 � t1)�
(k2�k1)

(k2 � k1)!

We have to find the mean, variance, autocorrelation, autocovariance, and normalized auto-

covariance of X(t):

Mean:

E ½X(t)� ¼ mX(t) ¼
X1

k¼0

ke�lt (lt)
k

k!
¼ lt

Variance:

var½X(t)� ¼ s2
X(t) ¼

X1

k¼0

k2e�lt (lt)
k

k!
� (lt)2 ¼ lt

Autocorrelation. From Eq. (19.1.18) we have

RX(t1, t2) ¼ E½X(t1)X(t2)� ¼ E{X(t1)½X(t2)� X(t1)þ X(t1)�}

¼ E ½X2(t1)� þ E ½X(t1)�E½X(t2)� X(t1)� (from condition given)

¼ (lt1)
2 þ lt1 þ lt1l(t2 � t1)

¼ l2t1t2 þ lt1 if t2 . t1

and we have a similar result if t1 . t2:

RX(t1, t2) ¼ l2t1t2 þ lt2 if t1 . t2
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Combining these two results, we have

RX(t1, t2) ¼ l2t1t2 þ lmin (t1, t2)

Autocovariance. From Eq. (19.1.19) we have

CX(t1, t2) ¼ RX(t1, t2)� mX(t1)mX(t2)

¼ l2t1t2 þ lmin (t1, t2)� l2t1t2 ¼ lmin (t1, t2)

Normalized Autocovariance. From Eq. (19.1.18) we have

rX(t1, t2) ¼
CX(t1, t2)

sX(t1)sX(t2)
¼

min (t1, t2)

l
ffiffiffiffiffiffiffi
t1t2

p ¼
1

l
min

ffiffiffiffi
t1

t2

r
,

ffiffiffiffi
t2

t1

r� �

Example 19.1.8 Two random processes X(t) and Y(t) are given by

X(t) ¼ A sin(vt þ f1); Y(t) ¼ B sin(vt þ f2)

where A and B are two random variables with parameters E[A] ¼ mA, E[B] ¼ mB,

var[A] ¼ sA
2, var[B] ¼ sB

2, cov[AB] ¼ sAB, and correlation coefficient rAB ¼ sAB=
(sAsB). We have to find the means and variances of X(t) and Y(t) and their cross-

correlation, cross-covariance, and normalized cross-covariance. The means and variances

can be obtained directly from Example 19.1.5.

Means:

mX(t) ¼ E½A sin(vt þ f1)� ¼ mA sin(vt þ f1)

mY (t) ¼ E ½B cos(vt þ f2)� ¼ mB cos(vt þ f2)

Variances:

s2
X(t) ¼ s2

A sin
2 (vt þ f1)

s2
Y (t) ¼ s2

B cos
2 (vt þ f2)

Cross-Correlation:

RXY (t1, t2) ¼ E½X(t1)Y(t2)� ¼ E½AB� sin(vt1 þ f1) cos(vt2 þ f2)

¼
1

2
E ½AB�{sin½v(t1 þ t2)þ f1 þ f2� þ sin½v(t1 � t2)þ f1 � f2�}

Cross-Covariance:

CXY (t1, t2)¼RXY (t1, t2)�mX(t1)mY (t2)

¼E ½AB�sin(vt1þf1)cos(vt2þf2)�mAmB sin(vt1þf1)cos(vt2þf2)

¼sAB sin(vt1þf1)cos(vt2þf2)

¼
1

2
sAB{sin½v(t1þ t2)þf1þf2�þ sin½v(t1� t2)þf1�f2�}

Normalized Cross-Covariance:

rXY (t1, t2) ¼
CXY (t1, t2)

sX(t1)sY (t2)
¼

sAB sin(vt1 þ f1) cos(vt2 þ f2)

sAsB sin(vt1 þ f1) cos(vt2 þ f2)
¼

sAB

sAsB

¼ rAB
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B 19.2 STATIONARY RANDOM PROCESSES

The distribution functions of all the random processes except that in Example 19.1.4 were

dependent on time. However, many of the random processes such as Example 19.1.4 have

the important property that their statistics do not change with time, which is an important

step toward obtaining the statistics from a single sample function. The statistics in the time

interval (t1, t2) is the same as in the time interval (t1þ t, t2þ t). In other words, the prob-

abilities of the samples of a random process X(t) at times t1, . . . , tn will not differ from

those at times t1þ t, . . . , tnþ t. This means that the joint distribution function of

X(t1), . . . ,X(tn) is the same as X(t1þ t), . . . ,X(tnþ t), or

FX(x1, . . . , xn; t1, . . . , tn) ¼ FX(x1, . . . , xn; t1 þ t, . . . , tn þ t) (19:2:1)

and the corresponding density function may be written as

fX(x1, . . . , xn; t1, . . . , tn) ¼ fX(x1, . . . , xn; t1 þ t, . . . , tn þ t) (19:2:2)

Random processes with the property of Eq. (19.2.1) or (19.2.2) are called nth-order

stationary processes. A strict-sense or strongly stationary process is a random process

that satisfies Eqs. (19.2.1) and (19.2.2) for all n. Analogously, we can also define lower

orders of stationarity.

A random process is first-order stationary if

FX(x; t) ¼ FX(x; t þ t) ¼ FX(x)

fX(x; t) ¼ fX(x; t þ t) ¼ fX(x)
(19:2:3)

and the distribution and density functions are independent of time. The random process in

Examples 19.1.2 and 19.1.5 is an example of a first-order stationary process.

A random process is second-order stationary if

FX(x1, x2; t1, t2) ¼ FX(x1, x2; t1 þ t, t2 þ t) ¼ FX(x1, x2; t)

fX(x1, x2; t1, t2) ¼ fX(x1, x2; t1 þ t, t2 þ t) ¼ fX(x1, x2; t)
(19:2:4)

The distribution and density functions are dependent not on two time instants t1 and t2 but

on the time difference t ¼ t1– t2 only. Second-order stationary processes are also called

wide-sense stationary or weakly stationary. Hereafter, stationary means wide-sense

stationary, and strict-sense stationary will be specifically mentioned.

In a similar manner, two processes X(t) and Y(t) are jointly stationary if for all n

FXY (x1, . . . , xn; y1, . . . , yn; t1, . . . , tn)

¼ FXY (x1, . . . , xn; y1, . . . , yn; t1 þ t, . . . , tn þ t) (19:2:5)

or

fXY (x1, . . . , xn; y1, . . . , yn; t1, . . . , tn)

¼ fXY (x1, . . . , xn; y1, . . . , yn; t1 þ t, . . . , tn þ t) (19:2:6)

and they are jointly wide-sense stationary if

FXY (x1, y2; t1, t2)

¼ FXY (x1, y2; t1 þ t, t2 þ t) ¼ FXY (x1, y2; t) (19:2:7)
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and the joint density function

fXY (x1, y2; t1, t2) ¼ fXY (x1, y2; t1 þ t, t2 þ t) ¼ fXY (x1, y2; t) (19:2:8)

nth-order stationarity implies lower-order stationarities. Strict-sense stationarity implies

wide-sense stationarity.

Similar to Eqs. (19.1.24)–(19.1.26), we can enumerate the following properties

for stationary random processes X(t) and Y(t). Two random processes X(t) and Y(t) are

independent if for all x and y

FXY (x, y) ¼ FX(x)FY (y) (19:2:9)

They are uncorrelated if for all t

CXY (t) ¼ RXY (t)� mXmY ¼ 0

or

RXY (t) ¼ mXmY (19:2:10)

They are orthogonal if for all t

RXY (t) ¼ 0 (19:2:11)

Moments of Continuous-Time Stationary Processes

We can now define the various moments for a stationary random process X(t).

Mean:

E ½X(t)� ¼ mX ¼

ð1

�1

xf (x)dx (19:2:12)

Variance:

E ½X(t)� mX�
2
¼ s2

X ¼

ð1

�1

(x� mX)
2f (x)dx ¼ E½X2(t)� � m2

X (19:2:13)

Autocorrelation:

RX(t) ¼ E ½X(t)X(t þ t)� ¼

ð1

�1

ð1

�1

x1x2 f (x1, x2; t)dx1 dx2 (19:2:14)

Autocovariance:

CX(t) ¼ E{½X(t)� mX�½X(t þ t)� mX �}

¼

ð1

�1

ð1

�1

(x1 � mX)(x2 � mX) f (x1, x2; t)dx1 dx2

¼ RX(t)� m2
X

(19:2:15)

Normalized Autocovariance (NACF):

rX(t) ¼
CX(t)

s2
X

(19:2:16)
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White-Noise Process

A zero mean stationary random process X(t) whose autocovariance or autocorrelation

is given by

CX(t) ¼ RX(t) ¼ s2
Xd(t) (19:2:17)

where d(t) is the Dirac delta function, is called a white-noise process. The energy of a

white-noise process is infinite since CX (0) ¼RX (0) ¼ E[X2(t)] ¼ 1. Hence it is an ideal-

ization. White-noise processes find extensive use in modeling communication systems.

The cross-moments of two jointly stationary processesX(t) and Y(t) are defined below:

Cross-Correlation:

RXY (t) ¼ E ½X(t)Y(t þ t)� ¼

ð1

�1

ð1

�1

x1y2 f (x1, y2; t)dy2 dx1 (19:2:18)

Cross-Covariance:

CXY (t) ¼ E{½X(t)� mX �½Y(t þ t)� mY �}

¼

ð1

�1

ð1

�1

(x1 � mX)(y2 � mY ) f (x1, y2; t)dy2 dx1

¼ RXY (t)� mXmY (19:2:19)

Normalized Cross-Covariance:

rXY (t) ¼
CXY (t)

sXsY

(19:2:20)

A stationary random process X(t) is passed through a linear system with impulse

response h(t). The input–output relationship will be given by the convolution integral:

Y(t) ¼

ð1

�1

X(t � a)h(a)da ¼

ð1

�1

X(t)h(t � a)da (19:2:21)

The cross-correlation function RXY(t) between the input and the output can be found as

follows:

E½X(t)Y(t þ t)� ¼ E

ð1

�1

X(t)X(t þ t� a)h(a)da (19:2:22)

or

RXY (t) ¼

ð1

�1

RX(t� a)h(a)da (19:2:23)

Since the cross-correlation function depends only on t, the output Y(t) will also be a

stationary random process.

Properties of Correlation Functions of Stationary Processes

Autocorrelation Functions
1. RX (0) ¼ E[X2(t)] ¼ average power � 0

2. RX(t) ¼ RX(�t). Or, RX(t) is an even function.

RX(t) ¼ E½X(t)X(t þ t)� ¼ E ½X(t þ t)X(t)� ¼ RX(�t) (19:2:24)
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3. jRX(t)j � RX(0). Or, the maximum value of jRX (t)j occurs at t ¼ 0 and jRX(t)j

for any t cannot exceed the value RX (0). From

E½X(t)+ X(t þ t)�2 � 0

we have

E ½X2(t)� þ E ½X2(t þ t)�+ 2E ½X(t)X(t þ t)� � 0

or

RX(0) � jRX(t)j (19:2:25)

4. If a constant T . 0 exists such that RX(T ) ¼ RX (0), then the RX (t) is periodic and

X(t) is called a periodic stationary process. From Schwartz’ inequality

[Eq. (14.5.13)] we have

{E ½g(X)h(X)�}2 � E ½g2(X)�E½h2(X)�

Substituting g(X ) ¼ X(t) and h(X) ¼ ½X(t þ tþ T )� X(t þ t)�, we can write

{E½X(t)½X(t þ tþ T )� X(t þ t)��}2 � E½X2(t)�E½X(t þ tþ T )� X(t þ t)�2

or

{RX(tþ T )� RX(t)}
2 � 2RX(0)½RX(0)� RX(T )�

Hence, if RX (T ) ¼ RX(0), then, since {RX(tþ T )� RX(t)}
2 � 0, the result

RX (tþ T ) ¼ RX (t) follows.

5. E ½X(t þ f)X(t þ tþ f) ¼ RX(t) ¼ E½X(t)X(t þ t)�

E ½X(t þ f)Y(t þ tþ f) ¼ RXY (t) ¼ E½X(t)Y(t þ t)�

In the formulation of correlation functions the phase information is lost.

6. If E[X(t)] ¼ mX and Y(t) ¼ aþ X(t), where a is constant, then E[Y(t)] ¼ aþ mX

and,

RY (t) ¼ E{½aþ X(t)�½aþ X(t þ t)�}

¼ a2 þ aE ½X(t þ t)� þ aE ½X(t)� þ E ½X(t)X(t þ t)�

¼ a2 þ 2amX þ RX(t) ¼ a2 þ 2amX þ m2
X þ CX(t)

¼ (aþ mX)
2 þ CX(t) (19:2:26)

If E [X(t)] ¼ 0, then E[Y(t)] ¼ a, and we can obtain the mean value of Y(t) from a

knowledge of its autocorrelation function RY(t).

Cross-Correlation Functions

7. RXY (t) ¼ RYX(�t): This is not an even function: ð19:2:27Þ
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The result follows from the definition of cross-correlation:

RXY (t)¼ E½X(t)Y(tþ t)� ¼ E½Y(tþ t)X(t)� ¼ RYX(�t) but RXY (0)¼ RYX(0)

ð19:2:28Þ

8. R2
XY (t) � RX(0)RY (0): This result follows from Schwartz’ inequality:

{E ½X(t)Y(t þ t)�}2 � E ½X2(t)�E ½Y2(t þ t)�

9. 2jRXY (t)j � RX(0)þ RY (0): The result follows from

E ½X(t)+ Y(t þ t)�2 ¼ RX(0)þ RY (0)+ 2RXY (t) � 0 (19:2:29)

10. If Z(t) ¼ X(t)þ Y(t), then

RZ(t) ¼ E ½Z(t)Z(t þ t)� ¼ E{½X(t)þ Y(t)�½X(t þ t)þ Y(t þ t)�}

¼ RX(t)þ RY (t)þ RXY (t)þ RYX(t) (19:2:30)

and if X(t) and Y(t) are orthogonal, then RZ(t) ¼ RX(t)þ RY (t).

11. If _X(t) is the derivative of X(t), then the cross-correlation between X(t) and
_X(t) is

RX _X(t) ¼
dRX(t)

dt
(19:2:31a)

This result can be shown from the formal definition of the derivative of X(t).

Substituting for _X ¼ lim1!0{½X(t þ 1)� X(t)�=1}, we obtain

RX _X(t) ¼ E½X(t)X(t þ t)�

¼ lim
1!0

E X(t)
X(t þ tþ 1)� X(t þ t)

1

� �� �

¼ lim
1!0

E
X(t)X(t þ tþ 1)� X(t)X(t þ t)

1

� �

¼ lim
1!0

RX(tþ 1)� RX(t)

1
¼

dRX(t)

dt

12. The autocorrelation of _X(t) is

R _X(t) ¼ �
d2RX(t)

dt2
(19:2:31b)
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This result can be shown following a procedure similar to that described as in (11)

above:

R _X(t) ¼ E½ _X(t) _X(t þ t)�

¼ lim
1!0

E X(t)
X(t þ tþ 1)� X(t þ t)

1

� �

¼ lim
d!0

lim
1!0

E
X(t þ d)� X(t)

d

� �
X(t þ tþ 1)� X(t þ t)

1

� �� �

¼ lim
d!0

1

d
lim
1!0

E
X(t þ d)

X(t þ tþ 1)� X(t þ t)

1

�X(t)
X(t þ tþ 1)� X(t þ t)

1

2
64

3
75

¼ lim
d!0

1

d
lim
1!0

RX(t� dþ 1)� RX(t� d)

1
�
RX(tþ 1)� RX(t)

1

� �

¼ lim
d!0

1

d

dRX(t� d)

dt
�
dRX(t)

dt

� �
¼ �

d2RX(t)

dt2

It can be shown that if a random process is wide-sense stationary, then it is necessary

and sufficient that the following two conditions be satisfied:

1. The expected value is a constant, E [X(t)] ¼ mX.

2. The autocorrelation function RX is a function of the time difference t22 t1 ¼ t and

not individual times, RX(t1, t2) ¼ RX(t2 � t1) ¼ RX(t).

We will now give several examples to establish conditions for stationarity. The first

few examples will be running examples that become progressively more difficult.

Example 19.2.1 Wewill revisit Example 19.1.5 and find the conditions necessary for the

random process X(t) ¼ A sin(vtþF) to be stationary where A,v are constants and F is a

random variable:

1. Mean:

E½X(t)� ¼ AE½sin(vt þF)� ¼ A

ðb

�a

sin(vt þ f) fF(f)df

One of the ways the integral will be independent of t is for F to be uniformly dis-

tributed in (0,2p), in which case we have

1

2p

ð2p

0

sin(vt þ f)df ¼
�1

2p
cos (vt þ f)





2p

0
¼ 0

and E [X(t)] ¼ 0.
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2. Autocorrelation:

E ½X(t1)X(t2)� ¼ A2E ½sin(vt1 þF) sin(vt2 þF)�

¼ A2E{cos½v(t2 � t1)� � cos½v(t2 þ t1)þ 2F�}

¼ A2 cos½v(t2 � t1)� � A2E{cos½v(t2 þ t1)þ 2F�}

E{cos½v(t2 þ t1)þ 2F�} ¼
1

2p

ð2p

0

cos½v(t2 þ t1)þ 2f� df

¼
1

2p

1

2
sin½v(t2 þ t1)þ 2f�





2p

0
¼ 0

Hence, RX(t1, t2) ¼ A2 cos½v(t2 � t1)� ¼ A2 cos½vt�, and X(t) is stationary if F is

uniformly distributed in (0,2p). Since RX(t) is periodic, X(t) is a periodic station-

ary process.

Example 19.2.2 We will modify Example 19.2.1 with both A andF as random variables

with density functions fA(a) and fF(f). We will now find the conditions under which

X(t) ¼ A sin(vtþF) will be stationary.

1. Mean:

E ½X(t)� ¼ E ½A sin(vt þF)� ¼

ð ð
a sin(vt þ f) fAF(a, f)df da

The first condition for the double integral to be independent of t is for A andF to be

statistically independent, in which case we have

E ½A sin(vt þF)� ¼

ð ð
a sin(vt þ f) fA(a) fFdf da

and the second condition is for F to be uniformly distributed in (0,2p), in which

case we have (1=2p)
Ð 2p
0

sin(vt þ f) df ¼ 0 and E ½X(t)� ¼ 0.

2. Autocorrelation:

E ½X(t1)X(t2)� ¼ E ½A2 sin(vt1 þF) sin(vt2 þF)�

Since A and F are independent, we have

E ½X(t1)X(t2)� ¼ E ½A2�E{cos½v(t2 � t1)� cos½v(t2 þ t1)þ 2F�}

¼ E ½A2� cos½v(t2 � t1)� � E ½A2�E{cos½v(t2 þ t1)þ 2F}

and from the previous example E{cos½v(t2 þ t1)þ 2F�} ¼ 0. Hence, RX(t1, t2) ¼

E ½A2� cos½v(t2 � t1)� ¼ E ½A2� cos½vt� and X(t) is stationary if A and F are inde-

pendent and if F is uniformly distributed in (0,2p). Since RX(t) is periodic, X(t)

a periodic stationary process.

Example 19.2.3 We will now examine the conditions for stationarity for X(t) ¼ A

sin(VtþF) when A, V and F are all random variables with density functions fA(a),

fV(v), and fF(f) respectively.
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1. Mean:

E ½X(t)� ¼ E ½A sin(Vt þF)� ¼

ððð
a sin(vt þ f) fAVF(a,v,f)df dv da

This triple integral is a difficult one to evaluate. Hence we resort to

conditional expectations by fixing the variable V ¼ v. Under this condition,

E ½X(t)� ¼
Ð
E ½X(t)jV ¼ v� fV(v)dv and from the previous example, if A and F

are independent and F is uniformly distributed in (0, 2p), we have

E ½X(t)jV ¼ v� ¼ 0, and

ð
E ½X(t)jV ¼ v� fV(v)dv ¼

ð
E ½A sin(vt þF)� fV(v)dv ¼ 0

2. Autocorrelation:

RX(t1, t2jV ¼ v) ¼ E ½X(t1jV ¼ v)X(t2jV ¼ v)�

¼ E ½A2 sin(vt1 þF) sin(vt2 þF)�

and from the previous example

E ½A2 sin(vt1 þF) sin(vt2 þF)� ¼
1

2
E ½A2� cos½vt�

where t ¼ t2 � t1. Hence

RX(t) ¼

ð
RX(tjV ¼ v) fV(v)dv ¼

ð
1

2
E ½A2� cos½vt� fV(v)dv

If V is uniformly distributed in (0,p), then

RX(t) ¼
1

p

ðp

0

1

2
E ½A2� cos½vt�dv ¼

E ½A2�

2p

sin(p)

t
¼

E ½A2�

2
Sa(p)

Example 19.2.4 In this example X(t) ¼ A cos(vt)þ B sin(vt), where A and B are

random variables with density functions fA(a) and fB(b). We have to find the conditions

under which X(t) will be stationary:

1. Mean:

E ½X(t)� ¼ E ½A cos(vt)þ B sin(vt)� ¼ cos(vt)E ½A� þ sin(vt)E ½B�

If E [X(t)] is to be independent of t, then E[A] ¼ E[B] ¼ 0, in which case

E [X(t)] ¼ 0.
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2. Autocorrelation:

RX(t1, t2) ¼ E ½X(t1)X(t2)� ¼ E{½A cos(vt1)

þ B sin(vt1)�½A cos(vt2)þ B sin(vt2)�}

¼ E{A2 cos(vt1) cos(vt2)þ B2 sin(vt1) sin(vt2)

þ AB½sin(vt1) cos(vt2)þ cos(vt1) sin(vt2)�}

¼
1

2
E ½A2�½cos(v(t2 � t1))þ cos(v(t2 þ t1))�

þ
1

2
E ½B2�½cos(v(t2 � t1))� cos(v(t2 þ t1))�

þ E ½AB� sin(v(t2 þ t1))

The conditions under which this equation will be dependent only on (t2 � t1) are

E[A2] ¼ E[B2] and E[AB] ¼ 0. In this case

RX(t1,t2) ¼ E ½A2�½cos(v(t2 � t1))� ¼ E ½A2�½cos(vt)�

We can now summarize the conditions for stationarity:

(a) E[A] ¼ E[B] ¼ 0

(b) E[A2] ¼ E[B2]

(c) E[AB] ¼ 0

Example 19.2.5 A die is tossed, and corresponding to the dots S ¼ f1,2,3,4,5,6g, a

random process X(t) is formed with the following time functions as shown in Fig. 19.2.1:

X(2;t) ¼ 3, X(4; t) ¼ (2� t), X(6; t) ¼ (1þ t)

X(1; t) ¼ �3, X(3;t) ¼ �(2� t), X(5;t) ¼ �(1þ t)

FIGURE 19.2.1
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We have to find mX(t), s
2
X(t), RX(t1,t2), CX(t1, t2), and rX(t1, t2) and check whether X(t) is

stationary:

Mean:

mX(t) ¼
1

6

X6

i¼1

Xi(t) ¼ 3� 3þ (2� t)� (2� t)þ (1þ t)� (1þ t) ¼ 0

The mean value is a constant.

Variance:

s2
X(t) ¼

1

6

X6

i¼1

X2
i (t) ¼

1

3
� ½32 þ (2� t)2 þ (1þ t)2� ¼

2

3
½t2 � t þ 7�

Autocorrelation:

RX(t1, t2) ¼
1

3
½9þ (1þ t1)(1þ t2)þ (2� t1)(2� t2)� ¼

1

3
½14� t2 � t1 þ 2t1t2�

Autocovariance. Since the mean value is zero, CX(t1, t2) ¼ RX(t1, t2).

Normalized Autocovariance:

rX(t1, t2) ¼
CX(t1, t2)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CX(t1)CX(t2)

p ¼
½14� t2 � t1 þ 2t1t2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(t21 � t1 þ 7)(t22 � t2 þ 7)

p

This process is not stationary.

Example 19.2.6 (Random Binary Wave) A sample function of a random binary wave

X(t) consisting of independent rectangular pulses p(t), each of which is of duration T, is

shown in Fig. 19.2.2. The height H of the pulses is a random variable with constant ampli-

tudes, which are equally likely to be +A. The time of occurrence of X(t) after t ¼ 0 is

another random variable Z, which is uniformly distributed in (0,T ). We have to find the

mean, variance, autocorrelation, autocovariance, and the normalized autocovariance

of X(t).

The random process X(t) is given by

X(t) ¼
X1

k¼�1

Hp(t � kT � Z)

FIGURE 19.2.2
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The probabilities of the random variable H are P(H ¼ A) ¼ 1
2
and P(H ¼ �A) ¼ 1

2
. Since

Z is uniformly distributed in (0,T ), the following probabilities can be formulated

for 0 , t1 , t2 , T:

P(t1 , Z , t2) ¼
t2 � t1

T
, P(0 , Z , t1) ¼

t1

T
, P(t2 , Z , T ) ¼ 1�

t2

T

Mean. Since X(t) assumes only þA or 2A with equal probability,

E ½X(t)� ¼
1

2
� Aþ

1

2
� (�A)

� �
¼ 0

Variance. The variance is given by

var½X(t)� ¼ s2
X ¼ E ½X2(t)� ¼

1

2
� A2 þ

1

2
� (�A)2

� �
¼ A2

Autocorrelation. Determining RX(t1, t2) is a bit more involved. The product X(t1)X(t2)

in various intervals of time (t1, t2) can be found:

t1 , Z , t2 � T

Here t1 and t2 lie in adjacent pulse intervals as shown in Fig. 19.2.3. In Fig. 19.2.3a

X(t1) ¼ 2A and X(t2) ¼ þA and X(t1)X(t2) ¼ 2A2. In Fig. 19.2.3b X(t1) ¼ þA and

X(t2) ¼ þA and X(t1)X(t2) ¼ A2. The values 2A2 and A2 will occur with equal

probability:

0 , Z , t1 � T: In this case, t1 and t2 lie in the same pulse interval as shown in

Fig. 19.2.3c. Here, X(t1) ¼ þA and X(t2) ¼ þA and X(t1)X(t2) ¼ A2.

t2 , Z , T: Here also t1 and t2 lie in the same pulse interval as shown in Fig. 19.2.3d.

However, X(t1) ¼ 2A and X(t2) ¼ 2A and X(t1)X(t2) ¼ A2.

(t12 t2) . T: In this case t1 and t2 lie in different pulse intervals and

X(t1)X(t2) ¼ +A2.

We can now find the autocorrelation function RX(t1, t2) ¼ E ½X(t1)X(t2)�. For

(t12 t2) . T, X(t1) and X(t2) are in different pulse intervals and invoking the inde-

pendence of the pulses E [X(t1)X(t2)] ¼ E [X(t1)]E [X(t2)] ¼ 0 since E [X(t)] ¼ 0.

For (t12 t2) � T, we have the following, using conditional expectations:

E ½X(t1)X(t2)� ¼ E ½X(t1)X(t2)jt1 , Z , t2�P(t1 , Z , t2)

þ E ½X(t1)X(t2)j0 , Z , t1�P(0 , Z , t1)

þ E ½X(t1)X(t2)jt1 , Z , T �P(t1 , Z , T )

The conditional expectations can be determined using the probabilities and the pro-

ducts X(t1)X(t2) found earlier for the various intervals. Since A2 and 2A2 occur

with equal probability in the interval t1 , Z , t2 � T, the first conditional expec-

tation term becomes

E ½X(t1)X(t2)jt1 , Z , t2�P(t1 , Z , t2) ¼ A2 �
1

2
�
t2 � t1

T
� A2 �

1

2
�
t2 � t1

T
¼ 0
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FIGURE 19.2.3
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Hence

RX(t1, t2) ¼
A2 t1

T
þ 1�

t2

T

� 	
¼ A2 1�

t2 � t1

T

� 	
, (t2 � t1) � T

0, (t2 � t1) . T

"

This equation was derived under the assumption t1 , t2. For arbitrary values of t1
and t2 with t ¼ (t22 t1), the autocorrelation function RX(t1, t2) is given by

RX(t) ¼
A2 1�

jtj

T

� �
, jtj , T

0, otherwise

8
<

:

The autocorrelation function for the process X(t) is shown in Fig. 19.2.4.

Autocovariance. Since the mean value is 0, CX(t) ¼ RX(t).

Normalized Autocovariance. The NACF is given by

rX(t) ¼
CX(t)

s2
X

¼
1�

jtj

T
, jtj , T

0; otherwise

(

Example 19.2.7 (Random Telegraph Wave) This example is a little different from the

previous one. A sample function of a random telegraph wave is shown in Fig. 19.2.5. The

wave assumes either of the values 1 or 0 at any instant of time.

FIGURE 19.2.4

FIGURE 19.2.5
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The probability of k changes from 0 to 1 in a time interval t is Poisson-distributed with

probability mass function p(k; l) given by

p(k; l) ¼
(lt)k

k!
e�lt, t � 0

where l is the average number of changes per unit time. We have to find the mean,

variance, autocorrelation, autocovariance, and normalized autocovariance.

Mean. Since X(t) assumes only 1 or 0 with equal probability, we obtain

E ½X(t)� ¼ mX ¼ 1 � P(x ¼ 1)þ 0 � P(x ¼ 0) ¼
1

2

Variance. The variance is given by

var½X(t)� ¼ s2
X ¼ E ½X2(t)� � m2

X ¼
1

2
� 12 þ

1

2
� 02

� �
�
1

4
¼

1

4

Autocorrelation. The autocorrelation function can be given in terms of the joint

density functions with t2 . t1:

RX(t1, t2) ¼ E ½X(t1) ¼ 0 � X(t2) ¼ 0� þ E ½X(t1) ¼ 0 � X(t2) ¼ 1�

þ E ½X(t1) ¼ 1 � X(t2) ¼ 0� þ E ½X(t1) ¼ 1 � X(t2) ¼ 1�

¼ (0 � 0)P½X(t1) ¼ 0 � X(t2) ¼ 0� þ (0:1)P½X(t1) ¼ 0 � X(t2) ¼ 1�

þ (1 � 0)P½X(t1) ¼ 1 � X(t2) ¼ 0� þ (1:1)P½X(t1) ¼ 1 � X(t2) ¼ 1�

or

RX(t1, t2) ¼ P½X(t1) ¼ 1 � X(t2) ¼ 1�

Expressing the joint probability in terms of conditional probabilities, we have

RX(t1, t2) ¼ P½X(t2) ¼ 1 jX(t1) ¼ 1�P½X(t1) ¼ 1�

The conditional probability in this equation is the probability of even number of

changes and using the Poisson distribution:

RX(t1, t2) ¼
1

2

X1

k¼0
k even

½l(t2 � t1)�
k

k!
e�l(t2�t1)

¼
e�l(t2�t1)

2

1

2

X1

k¼0

½l(t2 � t1)�
k

k!
þ
X1

k¼0

�½l(t2 � t1)�
k

k!

( )

¼
e�l(t2�t1)

2

el(t2�t1) þ e�l(t2�t1)

2

� �

¼
1

4
{1þ e�2l(t2�t1)}, t2 . t1

A similar equation holds good for t2 , t1. Hence, substituting jt2 � t1j ¼ jtj in the

equation above, RX(t) can be given by

RX(t) ¼
1

4
{1þ e�2ljtj}
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The autocorrelation function for the process X(t) is shown in Fig. 19.2.6 for

l ¼ 0.5.

Autocovariance:

CX(t) ¼ RX(t)� m2
X ¼

e�2ljtj

4

Normalized Autocovariance:

rX(t) ¼
CX(t)

s2
X

¼ e�2ljtj

Example 19.2.8 (Modulation) A random process Y(t) is given by Y(t) ¼ X(t)

cos(vtþF), where X(t), a zero mean wide-sense stationary random process with autocor-

relation function RX(t) ¼ 2e�2ljtj is modulating the carrier cos(vtþF). The random vari-

able F is uniformly distributed in the interval (0,2p), and is independent of X(t). We have

to find the mean, variance, and autocorrelation of Y(t):

Mean. The independence of X(t) and F allows us to write

E ½Y(t)� ¼ E ½X(t)�E ½cos(vt þF)�

and with E ½X(t)� ¼ 0 and E ½cos(vt þF)� ¼ 0 from Example 19.2.1, E[Y(t)] ¼ 0.

Variance. Since X(t) and F are independent, the variance can be given by

s2
Y ¼ E ½Y2(t)� ¼ E ½X2(t) cos2 (vt þF)� ¼ s2

XE ½cos
2 (vt þF)�

However

E ½cos2(vt þF)� ¼
1

2
E ½1þ cos(2vt þ 2FÞ� ¼

1

2
and s2

X ¼ CX(0) ¼ RX(0) ¼ 2

and hence s2
Y ¼ s2

X=2 ¼ 1.

FIGURE 19.2.6
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Autocorrelation:

RY (t) ¼ E ½Y(t)Y(t þ t)� ¼ E ½X(t) cos(vt þF)X(t þ t) cos(vt þ vtþF)�

¼ RX(t)
1

2
E ½cos(vt)þ cos(2vt þ vtþ 2F)�

¼
RX(t)

2
cos(vt)þ

RX(t)

2
E ½cos(2vt þ vtþ 2F)�

From Example 19.2.1 E ½cos(2vt þ vtþ 2F)� ¼ 0, and hence

RY (t) ¼
RX(t)

2
cos(vt) ¼ e�2ljtj cos(vt)

A graph of RY(t) is shown in Fig. 19.2.7 with l ¼ 0.5 and v ¼ 2p.

Example 19.2.9 (Cross-Correlation) Two random processes X(t) and Y(t) are given

by X(t) ¼ A cos(vt)þ B sin(vt) and Y(t) ¼ �A sin(vt)þ B cos(vt), where A and B

are random variables with density functions fA(a) and fB(b). We have to find the

cross-correlation, cross-covariance, and the normalized cross-covariance between X(t)

and Y(t).

From Example 19.2.4 the processes X(t) and Y(t) are stationary if E [A] ¼ E [B] ¼ 0,

E [A2] ¼ E [B2], and E [AB] ¼ 0. Hence the mean values mX ¼ mY ¼ 0. The variances of

these processes are E ½A2� ¼ E ½B2� ¼ s2.

Cross-Correlation. The cross-correlation function RXY(t1, t2) can be written as

RXY (t1, t2) ¼ E ½X(t1)Y(t2)�

¼ E{½A cos(vt1)þ B sin(vt1)�½�A sin(vt2)þ B cos(vt2)�}

¼ E{� A2 cos(vt1) sin(vt2)þ B2 sin(vt1) cos(vt2)

þ AB½cos(vt1) cos(vt2)� sin(vt1) sin(vt2)�}

FIGURE 19.2.7
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Substituting the values E [A2] ¼ E [B2] ¼ s2 and E [AB]¼0 in this equation, we

obtain

RXY (t1,t2) ¼ s2 sin½v(t1 � t2)� ¼ �s2 sin½vt�

where we have substituted t ¼ (t22 t1). The term RXY(t) is shown in Fig. 19.2.8 for

s2¼4 and v ¼ 2p.

Here RXY(t) is an odd function, unlike the autocorrelation function. Since

RXY (t)¼0 for t ¼ 0, we conclude that X(t) and Y(t) are orthogonal.

Cross-Covariance. Since mX ¼ mY ¼ 0, CXY(t) ¼ RXY(t).

Normalized Cross-Covariance:

rXY (t) ¼
CXY (t)

s2
¼

�s2 sin½vt�

s2
¼ � sin½vt�

Example 19.2.10 A random telegraph wave X(t) as in Example 19.2.7 is passed through

a linear system with impulse response h(t) ¼ e –btu(t), where u(t) is a unit step function.

The output of the system is Y(t). It is desired to find the cross-correlation function RXY(t).

From Example 19.2.7 the autocorrelation function RX(t) ¼
1
4
{1þ e�2ljtj}. Hence,

from Eq. (19.2.23), we have

RXY (t) ¼

ð1

0

1

4
(1þ e�2ljt�aj)e�bada

¼

1

4b
þ
1

4

ðt

0

e�2l(t�a)e�badaþ
1

4

ð1

t

(e�2l(a�t))e�bada t . 0

1

4b
þ
1

4

ð1

0

e�2l(a�t)e�bada t � 0

8
>><

>>:

FIGURE 19.2.8
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Evaluating the integrals and substituting l ¼ 1 and b ¼ 0.5, we obtain

RXY (t) ¼
1

4b
þ

le�bt

4l2 � b2
�

e�2lt

4(2l� b)
; t . 0

e2lt

4(2lþ b)
, t � 0

8
>>>><

>>>>:

or

RXY (t) ¼
1

2
þ

4

15
e�(t=2) �

1

6
e�2t, t . 0

1

10
e2t, t � 0

8
>>><

>>>:

The cross-correlation function RXY (t) is shown in Fig. 19.2.9.

RXY (t) does not possess any symmetry, unlike RX (t).

Moments of Discrete-Time Stationary Processes

In actual practice observations are made on the sample function of a stationary

random process X(t) at equally spaced time intervals fti, i ¼ 0, +1, . . .gwith correspond-

ing sequence of random variables fXi, i ¼ 0, +1, . . .g. These observation random vari-

ables will not be independent. Since fXig are samples of a stationary random process,

the means and variances of these samples are the same as in the original process:

E ½Xi� ¼ mX; var½Xi� ¼ s2
X , i ¼ 0, +1, . . . (19:2:32)

Analogous to the continuous case, we can define the various second moments:

Autocovariance:

CX(h) ¼ E ½(Xi � mX)(Xiþh � mX)�, i ¼ 0,+1, . . . (19:2:33)

Autocorrelation:

RX(h) ¼ E ½XiXiþh�, i ¼ 0,+ 1, . . . (19:2:34)

FIGURE 19.2.9
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Normalized Autocovariance (NACF):

rX(h) ¼
CX(h)

CX(0)
¼

CX(h)

s2
X

(19:2:35)

If fYi, i ¼ 0, +1, . . .g is the sequence obtained from a second stationary random

process Y(t) with mean mY and variance sY
2, then we can define the cross-moments as

follows:

Cross-Covariance:

CXY (h) ¼ E ½(Xi � mX)(Yiþh � mY � i ¼ 0,+1, . . . (19:2:36)

Cross-Correlation:

RXY (h) ¼ E ½XiYiþh� i ¼ 0,+1, . . . (19:2:37)

Normalized Cross-Covariance (NCCF):

rXY (h) ¼
CXY (h)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CX(0)CY (0)
p ¼

CXY (h)

sXsY

(19:2:38)

Example 19.2.11 A discrete zero mean stationary random process Xi is given by

Xi ¼ fXi�1 þ vi, i ¼ 1, . . . (19:2:39)

where vi is a zero mean Gaussian random process with variance sv
2. We want to find the

variance of Xi and the NACF rX(h).

Multiplying both sides of Eq. (19.2.39) by Xi and taking expectations, we have

E ½X2
i � ¼ fE ½XiXi�1� þ E ½Xivi� or s2

X ¼ fCX(1)þ E ½Xivi� (19:2:40)

The cross-correlation E ½Xivi� can be computed as follows:

E ½Xivi� ¼ E ½(fXi�1 þ vi)vi� ¼ s2
v (19:2:41)

since vi occurs after Xi21. Hence, substituting Eq. (19.2.41) in Eq. (19.2.40) and dividing

throughout by s2
X , we obtain

1 ¼ frX(1)þ
s2
v

s2
X

and s2
X ¼

s2
v

1� frX(1)
(19:2:42)

Premultiplying both sides of Eq. (19.2.39) by Xi�h and taking expectations, we have

E ½Xi�hXi� ¼ E ½fXi�hXi�1� þ E ½Xi�hvi� (19:2:43)

In Eq. (19.2.43) E ½Xi�hvi� ¼ 0 since vi occurs after Xi�h for h . 0; hence

CX(h) ¼ fCX(h� 1), h . 0 (19:2:44)

Dividing Eq. (19.2.44) by CX(0) ¼ s2
X , we obtain an equation for the NACF rX(h)

rX(h) ¼ frX(h� 1), h . 0 (19:2:45)
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and solving for rX(h) with initial condition rX(0) ¼ 1, we obtain

rX(h) ¼ fh, h . 0 (19:2:46)

Substituting Eq. (19.2.46) in Eq. (19.2.42), we have

s2
X ¼

s2
v

1� f2
(19:2:47)

The process defined by Eq. (19.2.39) is called an autoregressive process of order 1.

B 19.3 ERGODIC PROCESSES

The ensemble average of a random process X(t) is the mean value mX(t) defined by,

mX(t) ¼

ð1

�1

xfX(x; t)dx (19:3:1)

Finding the ensemble average mX(t) requires storing a multiplicity of sample functions and

finding the average. In many instances this process may be nontrivial. Given a sample

function of any random process X(t), the time average m̂X is defined by

m̂X ¼
1

2T

ðT

�T

X(t)dt (19:3:2)

A reasonable question to ask is whether the ensemble average can be obtained from a

much easier time average. We observe that the ensemble average is not a random variable

but is a function of time, whereas the time average is a random variable that is not a func-

tion of time. If these averages are to be equal, then the first condition that we have to

impose is that the random process X(t) be stationary, which removes the time factor in

the mean value. Under these conditions, we can write

E
1

2T

ðT

�T

X(t)dt

� �
¼ E ½m̂X � ¼

1

2T

ðT

�T

E ½X(t)�dt ¼ mX (19:3:3)

and m̂X is an unbiased estimator of mX.

If a random variable is to be equal to a constant, then the second condition from

Example 14.1.1 is that the variance of m̂X must tend to zero as T ! 1. Such random pro-

cesses are said to satisfy the ergodic hypothesis. We will now derive the conditions for a

random process to be mean-ergodic and correlation-ergodic.

Mean-Ergodic

A stationary random process X(t) is called mean-ergodic if the ensemble average is

equal to the time average of the sample function x(t). We will assume that the following

conditions are satisfied by X(t):

X(t) is stationary, implying that it has a constant mean mX, and the autocorrelation

function RX(t, tþ t) is a function of t only, or RX(t, tþ t) ¼ RX(t).

RX (0) ¼ E [X2(t)] is bounded, or RX(0) ,1. Hence CX (0) ¼ RX(0)2 mX
2 ,1.
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