
Chapter 3
Spectral Representation of Stationary Processes

In this chapter we review the spectral representation of stationary processes.
This representation theory is useful for at least two reasons. First it leads to
concrete representation results of stationary processes in terms of white noise.
These representations are basic for filtering and prediction and also for state-space
modeling of random signals. Second, spectral representation theory provides a
functional calculus for random variables and processes in terms of functions of a
complex variable, much in the same spirit as the Fourier transform for deterministic
signals. Unfortunately the Fourier transform of a stationary process cannot be
defined in a deterministic pathwise sense. For it is well-known that the sample paths
of a discrete-time stationary Gaussian process of, say, independent random variables
(discrete time white noise) are neither in `2 nor uniformly bounded with probability
one, and hence as functions of time they do not admit a Fourier transform [129].

The Fourier transform of a stationary process can however be defined in a
(global) mean-square sense, but this transform will not provide a stochastic process
in the ordinary sense but rather an equivalence class of processes with orthogonal
increments, or an orthogonal random measure, as these objects are commonly called
in the literature.

3.1 Orthogonal-Increments Processes and the Wiener
Integral

Let T be a subinterval (possibly infinite) of the real line R. A scalar continuous-
time process x D fx.t/I t 2 Tg, is said to have orthogonal increments if whenever
s1 < t1 � s2 < t2 we have

Ef.x.t2/ � x.s2//.x.t1/ � x.s1//g D 0; (3.1)
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66 3 Spectral Representation of Stationary Processes

where the overline denotes complex conjugation. To this requirement we shall also
add the zero mean condition,

E.x.t/ � x.s// D 0 t; s 2 T: (3.2)

We alert the reader to the fact that complex orthogonal increment processes defined
on the imaginary axis will play an important role in spectral representation,
discussed in Sect. 3.3.

Proposition 3.1.1. Let x be a process with orthogonal increments, then there is
a real monotone nondecreasing function F , uniquely determined by x up to an
additive constant, such that,

Efjx.t/ � x.s/j2g D F.t/ � F.s/; t � s: (3.3)

Proof. Let us fix an arbitrary t0 and define,

F0.t/ WD
(

Efjx.t/ � x.t0/j2g; t � t0

� Efjx.t/ � x.t0/j2g; t < t0

Then, by using the property (3.1), it is immediate to check that F0 is monotone
and satisfies (3.3). The function F0 is clearly the unique function satisfying (3.3)
normalized at t0 so as F0.t0/ D 0. Hence any function F.t/ WD F0.t/ + an arbitrary
constant, also satisfies (3.3) and is independent of t0. ut

The relation (3.3) is often written symbolically as

Efjdx.t/j2g D dF.t/:

It follows from (3.3) that an orthogonal increments process has the same continuity
properties (in mean square) as the monotone function F . In particular x has right
and left limits at every point t and an at most countable set of points of discontinuity
which can only be jumps. Without much loss of generality, x can be modified at the
jump points to have x.tC/ D x.t/, and hence also F.tC/ D F.t/, for all t 2 T.
If T D .a; b�, then in this way the process is automatically extended to the closure
Œa; b�.

A mean-square continuous process w WD fw.t/; t 2 Rg, with stationary
orthogonal increments will be called a (wide-sense) Wiener process. Note that, by
stationarity of the increments, F.t C h/ � F.t/ D F.h/ � F.0/ for all t , so that for
a Wiener process the derivative F 0.t/ (which a priori exists almost everywhere)
is independent of t . By continuity, one finds a unique monotone nondecreasing
solution of the form

F.t/ D �2t C constant
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where �2 is a positive constant. Hence for a Wiener process, we have Efjdw.t/j2g D
�2dt. In other words, the variance of the process grows linearly in time. If �2 D 1

the Wiener process is said to be normalized.
The Wiener process is a mathematically tractable version of the concept of

“continuous-time stationary white noise” which, intuitively, is a process with
completely uncorrelated variables and should correspond to the derivative

n.t/ D dw.t/

dt
:

It is easy to see that this derivative cannot exist in mean square. It has been shown
in many ways that it is actually impossible to give n a precise interpretation as a
stochastic process in the sense we understand this term in probability theory, see
e.g. [315]. On the other hand, white noise and representations of various random
variables as functionals of white noise constitute an extremely useful tool in the
analysis of stationary processes. For this reason there is a need for a rigorous theory
of white-noise representation involving in particular integrals with respect to the
Wiener process, which we shall now proceed to define.

Definition 3.1.2. Let f�;A; �g be a probability space and let R be the family
of bounded semi-open intervals .a; b� of the real line.1 An orthogonal stochastic
measure on R is a family of random variables f�.�/I � 2 Rg, where �.�/ W
f�;A; �g ! C is such that

(i) For each interval � 2 R, �.�/ is a random variable with zero mean and finite
variance

m.�/ D Efj�.�/j2g < 1; � 2 R: (3.4)

(ii) For any pair of disjoint intervals �1; �2 with �1 \ �2 D ;,

Ef�.�1/�.�2/g D 0: (3.5)

(iii) � is � -additive, i.e. for any � 2 R which is the disjoint union of countably
many sets �k 2 R,

�.�/ D
1X

kD1

�.�k/; a:s: (3.6)

where the series in the second member converges in mean square.

1The family R is a semi-ring of sets, see [130, p. 22]. A semi-ring is sometimes also called a
decomposable class of sets. More generally, a stochastic orthogonal measure could be defined on
an arbitrary semi-ring of sets.
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Note that, by Lemma B.2.1 in the appendix, the series of orthogonal random
variables (3.6) converges if and only if

m.�/ D
1X

kD1

Efj�.�k/j2g D
1X

kD1

m.�k/ < 1

so that m is a nonnegative � -additive set function which can be extended as a � -
finite measure on the Borel � -algebra of sets generated by R see e.g. [117, 130].
Conversely, m being � -additive on R implies that � is � -additive in the sense of
(3.6) above. In this sense, it is then possible to extend � to the � -ring generated by
R, where m.�/ < 1, see also [270, p. 5]. Note that � may not be extendable to
unbounded sets.

The measure � is called finite if E j�.R/j2 < 1. This is clearly the case if and
only if m is a finite Borel measure.

The notion of orthogonal stochastic measure is the natural starting point to
discuss stochastic integration. Before embarking on this, we remark that any
orthogonal increments process x defines a stochastic orthogonal measure, which
we shall denote dx, by the assignment

dx..a; b�/ WD x.b/ � x.a/; a < b:

The variance measure m associated to dx is uniquely determined by the variance
function F of the process as

m..a; b�/ WD F.b/ � F.a/; a < b:

Conversely, any orthogonal random measure � determines an orthogonal increments
process z by

z.t/ WD
(

�..t0; t �/; t � t0;

��..t; t0�/; t < t0;

where t0 is an arbitrary fixed time instant. The orthogonal increments process z
is normalized so that z.t0/ D 0; in fact, � determines a whole equivalence class
of orthogonal increments processes, all differing from the one just defined by an
arbitrary additive random variable.

In particular, for the stochastic orthogonal measure corresponding to the normal-
ized Wiener process w, the variance measure m is the Lebesgue measure. Since the
increments of w are the only thing that matters in this book, it will be convenient
to identify a Wiener process with the corresponding orthogonal stochastic measure
dw. Therefore, in the following, whenever we talk about a Wiener process we will
always refer to a whole equivalence class of processes defined modulo an arbitrary
additive random variable. Note that the stochastic measure dw is not finite.
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We shall now proceed to define the stochastic integral with respect to an
orthogonal random measure �. Let I� denote the indicator function of the set �,
i.e. I�.t/ D 1 if t 2 � and zero otherwise. For a scalar simple function

f .t/ D
NX

kD1

ckI�k
.t/; �k 2 R; �k \ �j D ;; k ¤ j;

the integral of f with respect to � is defined as follows,

Z
R

f .t/d�.t/ WD
NX

kD1

ck�.�k/: (3.7)

Note that the integrals of simple functions are just the (zero-mean) random variables
in the linear vector space

L.�/ WD spanf�.�/ j � 2 Rg D spanf�..a; b�/ j �1 < a < b < C1g; (3.8)

generated by the increments of �.
The fundamental property of the stochastic integral of simple functions is

E

( ˇ̌̌
ˇ
Z
R

f .t/d�.t/

ˇ̌̌
ˇ
2
)

D
NX

kD1

jckj2m.�k/ D
Z
R

jf .t/j2dm; (3.9)

showing that the integral is an isometric map mapping the dense linear manifold of
simple functions in the Lebesgue space L2.R; dm/ onto L.�/. We denote this map
by the symbol I� . Using this compact notation the formula (3.9) reads

kI�.f /k D kf kL2.R;dm/;

where the norm in the first member is the variance norm in the linear manifold L.�/.
Let us now take an arbitrary function f 2 L2.R; dm/. Then f is the limit in

mean square of a sequence of simple square-integrable functions fn,

Z
R

jf .t/ � fn.t/j2dm ! 0; n ! 1;

so that by the isometric property of the integral

kI�.fn/ � I�.fk/k D kfn � fkkL2.R;dm/ ! 0

as n; k ! 1. Therefore the sequence fI�.fn/g is a fundamental sequence in
L2.�;A; �/ and converges to a random variable with finite variance which we shall
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define to be the integral of f with respect to the stochastic measure �. In other words,
for an arbitrary f 2 L2.R; dm/, the stochastic integral of f with respect to � is the
mean square limit

I�.f / D
Z
R

f .t/d�.t/ WD lim
n!1

Z
R

fn.t/ d�.t/: (3.10)

It is easy to check that the limit is indeed independent of the particular sequence
of simple functions. The fundamental property of the integral is recorded in the
following theorem. The proof is straightforward invoking Theorem B.2.7.

Theorem 3.1.3. The stochastic integral I� is a linear bijective map from
L2.R; dm/ onto the Hilbert space H.�/ D closure L.�/ which preserves inner
product

E

( Z
R

f .t/d�.t/

Z
R

g.t/d�.t/

)
D
Z
R

f .t/ Ng.t/ dm: (3.11)

In other words, I� is a unitary map L2.R; dm/ ! H.�/.

We omit the proof of the following immediate corollary of Theorem 3.1.3.

Corollary 3.1.4. The map assigning to any Borel set � � R the random variable

�.�/ WD
Z

�

f .t/d�.t/ D
Z
R

I�.t/f .t/d�.t/ (3.12)

is a finite stochastic orthogonal measure if and only if f 2 L2.R; dm/.

This measure we shall denote d� D fd�.

3.2 Harmonic Analysis of Stationary Processes

There is a fundamental result in analysis which provides a harmonic representation
of the covariance function of a stationary process. This result, here reported without
proof, is known as the Herglotz Theorem in the discrete-time case and as the
Bochner Theorem in continuous time.

Let 	 ! ƒ.	/ be the covariance function of a scalar stationary random process2

y, where 	 2 Z in the discrete time case and 	 2 R in the continuous time case. In
continuous time ƒ will be assumed to be a continuous function3 of 	 2 R.

2Recall that all stationary processes considered in this book will have finite second-order moments.
3This is equivalent to assuming y mean-square continuous.
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Theorem 3.2.1 (Herglotz, Bochner). Let I be the interval Œ�
; 
� in the discrete
time case and .�1; C1/ in the continuous time case. Then, given a covariance
function ƒ, there is a finite positive measure dF on the Borel subsets of the interval
I such that

ƒ.	/ D
Z
I

ei�	 dF.�/ : (3.13)

The measure dF is uniquely determined by ƒ.

An equivalent (although a bit more cumbersome) way of formulating the result
is to say that there is a real right-continuous monotone non-decreasing function F

defined on the interval Œ�
; 
� (discrete time) or .�1; C1/ (continuous time) such
that (3.13) holds. The monotone function F , uniquely determined by ƒ modulo an
arbitrary additive constant, is called the spectral distribution function of the process
y. One can make F unique by imposing say F.�
/ D 0 (in this case dF has no
mass at � D �
). Since

1 > Efjy.t/j2g D ƒ.0/ D
Z 


�


dF.�/ D F.
/;

the function F must actually be bounded. This spectral distribution function
describes how the “statistical power” Efjy.t/j2g D ƒ.0/, of the process y is
distributed in frequency. For this reason it is called power spectral distribution
function in the engineering literature.

Example 3.2.2. Consider a random sum of simple harmonic oscillations

y.t/ D
NX

kD�N

ykei�k t ;

where �
 < �k � 
 are deterministic frequencies and yk are mutually uncorrelated
zero-mean random variables with variance �2

k . This process is stationary with a
quasi-periodic covariance function

ƒ.	/ D
NX

kD�N

�2
k ei�k	 :

Since we can formally rewrite ƒ.	/ in the form (3.13) with F the monotone function

F.�/ WD
NX

kD�N

�2
k 1.� � �k/ � 
 � � � 
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where 1.�/ is the indicator function of the half line f� � 0g, it follows that F is
the distribution function of the process. In this simple example the power spectral
distribution function increases only at the jumps of F and the statistical power
of the process ƒ.0/ D PN

kD�N �2
k is all concentrated at the discrete frequencies

�k . In more general situations the power of the process will also be distributed
continuously on the interval �
 < � � 
 .

Like every real monotone function, the spectral distribution function F can be
split in two components

F D F1 C F2 (3.14)

where F1 is the absolutely continuous component,

F1.�/ D
Z �

�


ˆ.�/
d�

2


and F2 is the singular component of F , whose points of increase are a set of
Lebesgue measure zero. The singular part F2 carries all discontinuities (finite jumps)
of F . The non-negative function ˆ is called the spectral density function of the
process.

If ƒ is a summable function, i.e.,
PC1

	D�1 jƒ.	/j < 1, then the series

C1X
	D�1

e�i�	 ƒ.	/ (3.15)

converges pointwise uniformly in the interval Œ�
; 
� to a periodic function Oƒ.�/,
and then the coefficients fƒ.	/g must necessarily be the Fourier-series coefficients
of Oƒ.�/; i.e.,

ƒ.	/ D
Z C


�


ei�	 Oƒ.�/
d�

2

: (3.16)

It follows that in this case the distribution function is absolutely continuous and the
spectral density function is just Oƒ.�/, namely

ˆ.�/ D Oƒ.�/:

Remark 3.2.3. To make contact with the Fourier transform of ordinary functions
(which we shall need to do later on), it turns out to be convenient to extend the
distribution function F in the Herglotz representation as a periodic function to the
whole real axis. Equivalently, one can always think of F as being a function defined
on the unit circle, T WD fz D ei� I �
 < � � 
g, of the complex plane. Therefore
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it is more natural to define the density ˆ as a function defined on the unit circle
and hence as a function of ei� . In view of this, with a slight misuse of notation,
we write F.ei� / or ˆ.ei� / instead of F.�/ or ˆ.�/ whenever convenient, without
further notice. Similarly in continuous time, it turns out to be convenient to regard
the spectral distribution F or ˆ as a function on the imaginary axis I; i.e., as a
function of i!.

3.3 The Spectral Representation Theorem

The Fourier-like representation of the covariance function of a stationary process
provided by Herglotz’s Theorem is the basis of a stochastic Fourier-like representa-
tion for the process y itself. This representation theorem is important as it provides
very precise information about the structure of the elements of the space H.y/.

We shall define a linear map, which for the moment we denote I (a more
descriptive notation will be introduced in the following), mapping the functions
Of 2 L2fŒ�
; 
�; dFg, square integrable with respect to the spectral distribution dF,

into random variables belonging to H.y/. This map will be first defined on a dense
set of functions and then extended by continuity.

Let I map the elementary trigonometric functions � ! ek.�/ WD ei�k into the
random variables y.k/I k 2 Z. We extend I by linearity so that

I

 X
k

ckek

!
WD
X

k

cky.k/; k 2 �; ck 2 C; (3.17)

for all finite linear combinations
P

k ckek , called trigonometric polynomials. In
this way I maps the linear manifold E � L2fŒ�
; 
�; dFg of all trigonometric
polynomials onto the dense linear manifold L.y/ � H.y/ spanned by the random
variables of the process

L.y/ WD spanfy.t/ I t 2 Zg: (3.18)

Now, it follows from Weierstrass approximation theorem that the manifold E is
dense in L2fŒ�
; 
�; dFg; a proof of this fact can for example be found in [231, 232].
Then, by a simple application of Herglotz’s Theorem one can see that the map I is
isometric, as

hek; ej iL2fŒ�
;
�;dFg D ƒ.k � j / D hy.k/; y.j /iH.y/; (3.19)

and hence, since any Of 2 L2fŒ�
; 
�; dFg is the mean square limit of a sequence
of trigonometric polynomials . Ofk/, I can be extended by continuity to the whole
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of L2fŒ�
; 
�; dFg. In fact, by (3.19), I. Ofk/ also converges in mean square to some
random variable in H.y/. We just define I. Of / to be this limit

I. Of / WD lim
k!1 I. Ofk/

in L2.�;A; �/. In this way the extended map (still denoted by) I, becomes a unitary
map from L2fŒ�
; 
�; dFg onto H.y/ (Theorem B.2.7). This leads to the following
fundamental result.

Theorem 3.3.1. There is a finite orthogonal stochastic measure d Oy on the (Borel
sets of the) interval �
 < � � 
 , such that

I. Of / D
Z C


�


Of .�/d Oy.�/; Of 2 L2fŒ�
; 
�; dFg; (3.20)

so that, in particular,

y.t/ D
Z 


�


ei� t d Oy.�/; t 2 Z: (3.21)

The orthogonal stochastic measure is uniquely determined by the process y and
satisfies

Efd Oy.�/g D 0; Efjd Oy.�/j2g D dF.�/; (3.22)

where F is the spectral distribution function of y.

It is implicit in the statement of the theorem that every discrete-time stationary
process admits an integral representation of the form (3.21). Formula (3.21) is
normally called the spectral representation of the discrete-time stationary process y.
The stochastic measure d Oy will be referred to as the Fourier transform of the process
y in this book. The map I corresponding to a specific process y will hereafter be
denoted by I Oy .

Proof. Let � WD .�1; �2� be a subinterval of Œ�
; 
�, let I� be the indicator function
of �, and define

Oy.�/ WD I.I�/ (3.23)

so that by the isometric character of I we have Efj Oy.�/j2g D kI�k2
L2fŒ�
;
�;dFg D

F.�/. Here we have denoted by F also the Borel measure induced by the spectral
distribution function F . Also, for an arbitrary pair of intervals �1; �2 we have

Ef Oy.�1/ Oy.�2/g D hI�1; I�2iL2fŒ�
;
�;dFg D F.�1 \ �2/;
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from which, taking �1 \ �2 D ;, it is easily seen that Oy is a stochastic orthogonal
measure defined on the semi-open intervals of Œ�
; 
� satisfying (3.23). Obviously
this measure is finite as Efj Oy..�
; 
�/j2g D F..�
; 
�/ < 1 and can then be
extended to the Borel sets of the interval Œ�
; 
�.

We now proceed to show that (3.20) holds for all Of 2 L2fŒ�
; 
�; dFg. This is
certainly true for simple functions since in this case

I. Of / D
NX

kD1

ckI.I�k
/ D

NX
kD1

ck Oy.�k/ D
Z 


�


Of .�/d Oy.�/

by the very definition of the stochastic integral. Now, simple functions are dense
in L2fŒ�
; 
�; dFg, and, by the isometry described above, the family of random
variables fI. Of /j Of simpleg is dense in H.y/. Hence any random variable  2
H.y/, being the limit in mean square of a sequence I. Ofk/ with Ofk simple
functions, is at the same time the limit of a sequence of stochastic integrals of
simple functions I Oy. Ofk/. Therefore every random variable of H.y/ is a stochastic

integral of some function Of 2 L2fŒ�
; 
�; dFg with respect to the stochastic
measure Oy.

Note that the converse of this statement is obviously also true as all Oy.�/ are
random variables in H.y/ by definition and the stochastic integral of all functions
Of 2 L2fŒ�
; 
�; dFg are then also in H.y/.

ut

3.3.1 Connections to the Classical Definition of Stochastic
Fourier Transform

It is instructive to examine the relation of the spectral representation, as it has been
introduced in this section, with the classical early definition of stochastic Fourier
transform. This is done below, in a series of conceptual steps. The details of the
procedure can be found in the early literature or, in condensed form, in [270, pp. 26–
27 ].

1. Let t be a discrete time parameter. One may first try to formally define the Fourier
transform of a stationary second-order process y as the limit (in mean square)

Y.�/ D lim
N !1

CNX
tD�N

e�i� t y.t/; (3.24)

but for a stationary process this mean square limit cannot exist. (The case that y

is white noise is quite obvious.)



76 3 Spectral Representation of Stationary Processes

2. Then one formally integrates (3.24) with respect to � on an interval � WD
Œ�1; �2� � Œ�
; 
�. Setting

�t .�/ D
(

e�i�2t �e�i�1t

�2
it
; t ¤ 0

�2��1

2

; t D 0

the integrated Fourier series

lim
N !1

CNX
tD�N

�t .�/y.t/ (3.25)

now converges in mean square and converges to the stochastic orthogonal
measure (which we defined as the Fourier transform of y) Oy.�/. Hence Oy.�/

is an integrated version of the formal Fourier transform and we may write

Oy.�/ WD
Z �2

�1

Y.�/
d�

2

:

One can show convergence by working out the following steps

(a) The deterministic Fourier series

SN .�/ WD
CNX

tD�N

�t .�/ei� t (3.26)

converges pointwise as N ! 1 to the indicator function I�.�/ of the interval
� WD Œ�1; �2�. Actually, for this to be literally true one needs to modify slightly
the definition of I� at the extreme points of the interval, in order to have
pointwise convergence also at �1; �2.

(b) Since SN .�/ converges boundedly pointwise to I�.�/, we also have

SN ! I� in L2.Œ�
; 
�; dF/;

where F is the spectral distribution of the process y. Hence, by the well-
known isometric property of the stochastic integral,

Oy.�/ D
Z 


�


I�.�/d Oy.�/ D lim
N !1

Z 


�


SN .�/d Oy.�/:

(c) The last integral in the equation is just the integrated Fourier series (3.25).

3. In this sense one may say that the formal Fourier series (3.24) converges to the
white noise Y.�/ on Œ�
; 
� as N ! 1.
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3.3.2 Continuous-Time Spectral Representation

The continuous-time analog of Theorem 3.3.1 is as follows.

Theorem 3.3.2. Every stationary process y WD fy.t/ I t 2 Rg, continuous in
mean-square, admits a representation

y.t/ D
Z C1

�1
ei!t d Oy.i!/; t 2 R; (3.27)

where d Oy is a finite orthogonal stochastic measure uniquely determined by the
process, which satisfies

Efd Oy.i!/g D 0; Efjd Oy.i!/j2g D dF.i!/; (3.28)

where F is the spectral distribution function of y. The map I Oy defined by the
stochastic integral

I Oy. Of / D
Z C1

�1
Of .i!/d Oy.i!/; Of 2 L2f.�1; C1/; dFg; (3.29)

is an isometry from L2f.�1; C1/; dFg onto H.y/.

The orthogonal stochastic measure Oy (more commonly denoted d Oy in the following)
is called the Fourier transform of the stationary process y.

The following corollary describes explicitly the fundamental isomorphism
by which random elements in H.y/ correspond to elements of the space
L2fŒ�
; 
�; dFg and the corresponding action of the shift group.

Corollary 3.3.3 (Spectral Isomorphism Theorem). Let y be a stationary
discrete-time process. Then, every random element  2 H.y/ can be written in
a unique way as a stochastic integral I Oy. Of /, with respect to the Fourier transform

Oy of the process y, of some function Of 2 L2fŒ�
; 
�; dFg. In fact the map
I Oy W L2fŒ�
; 
�; dFg ! H.y/ is isometric and bijective, i.e., unitary. It transforms
the shift operator U into the operator of multiplication by the exponential function
e.�/ W � ! ei� , acting on L2fŒ�
; 
�; dFg, i.e.,

U D I Oy.e Of /;  D I Oy. Of /: (3.30)

A totally analogous statement holds for continuous-time processes provided one
substitutes Œ�
; 
� for .�1; C1/, the unitary operator U for the shift group
fUt I t 2 Rg, and ei� for ei!t , t 2 R.

A generalization of this result to vector-valued processes will be given in the next
sections.
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3.3.3 Remark on Discrete-Time White Noise

A very simple but important kind of discrete-time stationary process is (wide-
sense) stationary white noise. This is a stationary process w D fw.t/; t 2 Zg with
uncorrelated (i.e., orthogonal) components. The covariance function of this process
is a scalar multiple of the delta function, say ƒ.	/ D �2ı.	/ where ı.	/ D 1 for
	 D 0 and zero otherwise. Since ƒ is trivially a summable function, this process
has an absolutely continuous spectral distribution function with a (spectral) density,
which is just a constant function ˆ.�/ D �2; � 2 Œ�
; 
�: The “flat” spectral
density is the reason why this process is called white.

It follows that the spectral measure d Ow, of a white noise process has the following
property

Efd Ow.�/d Ow.�/�g D �2 d�

2

;

i.e., Ow is a Wiener process on Œ�
; 
�. It is easy to see that, conversely, every process
w with a spectral measure of the Wiener type,

w.t/ D
Z 


�


ei� t d Ow.�/; t 2 Z;

is white noise.

3.3.4 Real Processes

If the process y is real, its spectral measure has some special symmetry properties.

Proposition 3.3.4. If y is a real stationary process, its spectral measure Oy is such
that

Oy.�/ D Oy.��/ (3.31)

for every Borel set � of the interval Œ�
; 
�, where �� D f� j�� 2 �g. Moreover,
the real and imaginary parts of Oy.�/ D Or.�/ C i Os.�/ are mutually orthogonal
stochastic measures, i.e.,

EfOr.�1/Os.�2/g D 0 (3.32)

for all Borel sets �1; �2.

Proof. Notwithstanding the fact that the y.t/ are real random variables, we
shall keep on working in the complex Hilbert space H.y/. It is easy to see
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that if Of .�/ corresponds under I Oy to the random variable �, then the complex

conjugate N� must be associated to the function Of .��/. This fact is true for
all trigonometric polynomials Of .�/ D P

k ckek.�/ which correspond under
I Oy to finite linear combinations � WD P

k cky.k/; ck 2 C, since clearly the
complex conjugate N� D P

k Ncky.k/ is associated to the function
P

k Nckek.�/ D
Of .��/. Then, since I Oy W I� ! Oy.�/ we also have I Oy W NI�� ! Oy.�/,

but NI�� D I��, since the indicator is a real function and therefore (3.31)
follows.

To prove the remaining statement first note that Or and Os are both � -additive real
stochastic measures and that from (3.31) we get

Or.�/ D Or.��/; Os.�/ D �Os.��/ (3.33)

for all Borel sets �. Moreover, since Ef Oy.�1/ Oy.�2/g D E j Oy.�1 \ �2/j2 � 0 it
follows that Im Ef Oy.�1/ Oy.�2/g D 0, i.e.,

EŒOs.�1/ Or.�2/ � Or.�1/Os.�2/� D 0:

Combining this relation with the analogous one obtained by substituting ��1 in
place of �1 and using (3.33) one gets the orthogonality relation (3.32). Hence
Ef Oy.�1/ Oy.�2/g D EfOr.�1 \ �2/2 C Os.�1 \ �2/2g. However, �1 \ �2 D ;
implies that EfOr.�1 \�2/g D EfOs.�1 \�2/g D 0. This shows that Or and Os are also
orthogonal measures and concludes the proof.

ut
For real processes the spectral representation (3.21) can be written completely in

terms of real quantities. From (3.33) one easily obtains

y.t/ D
Z 


�


cos � t d Or.�/ �
Z 


�


sin � t d Os.�/; t 2 Z:

3.4 Vector-Valued Processes

If we denote by d Oyk; k D 1; 2; : : : ; m, the spectral measure corresponding to the
k-th component of an m-dimensional stationary process y, we can write the spectral
representation of an m-dimensional process in vector form as

y.t/ D
Z

ei� t d Oy.�/; t 2 Z;

where Oy is now a vector stochastic orthogonal measure
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Oy.�/ D

2
6664

Oy1.�/

Oy2.�/
:::

Oym.�/

3
7775 : (3.34)

The limits of integration are .�
; 
/ in discrete time and .�1; C1/ in continuous
time. It is convenient to use matrix notations. Introduce the m � m matrix

F.�/ WD
h
Ef Oyk.�/ Oyj .�/g

im

k;j D1
; (3.35)

where � is a Borel set in Œ�
; 
�. Then F.�/� D F.�/, i.e., F.�/ is Hermitian.
Moreover, by Schwartz’ inequality,

jFkj.�/j � k Oyk.�/kk Oyj .�/k D ƒkk.0/1=2ƒjj.0/1=2

so that F.�/ is bounded for all Borel subsets �.
Since for any a 2 C

m, a�F a is the spectral measure of the scalar process a�y.t/,
it follows also immediately that F is a positive semidefinite, � -additive function of
�, i.e., a matrix measure. We shall call F (or dF ) the spectral matrix measure of
the process y. Naturally, to the matrix measure F we may associate an equivalence
class of Hermitian matrix valued functions � ! F.�/, each defined modulo an
additive arbitrary constant matrix, which are monotonic nondecreasing in the sense
that F.�2/ � F.�1/ � 0 (positive semidefinite) for �2 � �1. The vector-valued
generalization provides readily the representation of the covariance matrix of the
process as a Fourier-like integral of the form

ƒ.	/ D
Z 


�


ei�	 dF.�/; 	 2 ZI ƒ.	/ D
Z 1

�1
ei!	 dF.!/; 	 2 R;

where we have taken the liberty of denoting by the same symbol dF the two
(obviously different) matrix measures of discrete-time and of continuous time
processes. These are the matrix versions of the Herglotz and Bochner Theorems.

As in the scalar case we have the canonical decomposition

F D F1 C F2;

where F1 is the absolutely continuous component and F2 the singular part of F .
The absolutely continuous part is the indefinite integral of a spectral density

matrix ˆ which is Hermitian and positive semidefinite (ˆ.�/ � 0; � 2 Œ�
; 
�).
For processes taking values in R

m, which will be also called real for short, the
symmetry relation (3.31) translates into Fkj.�/ D Fjk.��/; k; j D 1; 2; : : : ; m,
which, for the spectral density matrix reads ˆ.�/� D ˆ.��/0 or, equivalently,
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ˆ.��/0 D ˆ.�/. With the notational convention described in Remark 3.2.3 this
can be rewritten as

ˆ.e�i� /0 D ˆ.ei� /: (3.36)

This property is sometimes called parahermitian symmetry.
The vector analogue of the spectral isomorphism theorem requires a preliminary

brief digression on integration with respect to the matrix measure F . Deterministic
vector-valued functions will be written as row vectors hereafter. As in the scalar
case, the integral of f with respect to F is first defined for simple m-dimensional
functions

f .�/ D
NX

kD1

ckI�k
.�/; �k � Œ�
; 
�; �k \ �j D ; k ¤ j;

where ck are row vectors in C
m, as

Z 


�


f .�/dF.�/ WD
NX

kD1

ckF.�k/

and is then extended to all measurable m-dimensional functions by the usual limiting
procedure. This clearly applies to matrix-valued simple functions as well. The
integral of bilinear (or quadratic) forms of the type

Z 


�


f .�/dF.�/g.�/�

may also be defined in terms of sequences of vector-valued simple functions .fk/

and .gj / approximating f and g (so that .fkg�
j / is a sequence of simple matrix

functions approximating fg�) as the limit

Z 


�


f .�/dF.�/g.�/� WD lim
k;j !1 trace

Z 


�


gj .�/�fk.�/dF.�/:

The space of m-dimensional square integrable functions with respect to the
matrix measure F is denoted by L2

m.Œ�
; 
�; dF/. It has been shown [79, p. 1349]
that this space is complete and hence a Hilbert space with respect to the scalar
product

hf; gi WD
Z 


�


f .�/dF.�/g.�/�; (3.37)

provided one agrees to identify vector functions whose difference has norm equal
to zero with each other. Functions f1; f2 such that kf1 � f2k D 0 are said to be
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equal F -almost everywhere. If F happens to be singular on nontrivial subsets, it
may happen that f1 and f2 are equal F -almost everywhere but are widely different
pointwise.

The fundamental isometric property of the stochastic integral with respect to a
vector stochastic measure can now be stated in the following form,

EfI Oy.f /I Oy.g/�g D E

�Z 


�


f .�/ d Oy.�/

�Z 


�


g.�/ d Oy.�/

���
D

Z 


�


f .�/dF.�/g.�/� D hf; giL2
m.Œ�
;
�;dF/; (3.38)

where f and g are functions in L2
m.Œ�
; 
�; dF/ and F is the spectral matrix

measure of Oy.
The vector version of the spectral isomorphism theorem follows.

Theorem 3.4.1 (Spectral Isomorphism Theorem). Let y be an m-dimensional
stationary process with stochastic Fourier transform Oy. Then every  2 H.y/ can be
written as a stochastic integral I Oy. Of / of a unique function Of 2 L2

mfŒ�
; 
�; dFg.
In fact, the map I Oy W L2

mfŒ�
; 
�; dF g ! H.y/ is unitary. It maps the elementary
exponential function Œ0; : : : ; et ; : : : ; 0� (et .�/ D ei� t in the k-th place) into the
random variables yk.t/, for k D 1; 2; : : : ; m, and transforms the shift operator U

of the process y into the operator Me , the multiplication by the exponential function
e W � ! ei� , acting on L2

mfŒ�
; 
�; dFg. In other words, the diagram

commutes. A totally analogous statement holds for continuous-time processes
provided one substitutes Œ�
; 
� for .�1; C1/, the unitary operator U for the
shift group fUt I t 2 Rg, and ei� for ei!t , t 2 R.

3.5 Functionals of White Noise

Let `2
m � `2

m.Z/ be the Hilbert space of square summable m-dimensional functions
(sequences) f W Z ! C

m, endowed with the inner product
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hf; gi WD
C1X
�1

f .t/g.t/�:

In the engineering literature `2
m is sometimes referred to as the space of signals with

finite energy, the energy being just the squared norm

kf k2 D
C1X
�1

jf .t/j2;

where j � j denotes the Euclidean norm. For m D 1 (scalar square-summable
sequences) the subscript will be dropped.

Functions which are zero for negative [positive] values of the argument, f .t/ D
0; t < 0; Œt > 0� are called causal [anticausal]. If f .t/ D 0; t � 0; Œt � 0�, f

is called strictly causal [strictly anticausal]. The subspaces of causal and anticausal
functions in `2

m.Z/ will be denoted by the symbols `2C
m and by `2�

m respectively.
They are clearly isomorphic to `2

m.ZC/ and to `2
m.Z�/.

An m-dimensional white noise process w, is just a stationary vector process
whose components are pairwise uncorrelated so that

Efw.t/w.s/�g D Qı.t � s/; (3.39)

where the variance matrix Q is a Hermitian positive-semidefinite matrix. In the
following we shall assume that Q is nonsingular and denote by Q1=2 an arbitrary
square root of Q, i.e., a square matrix A satisfying AA0 D Q. Therefore we
may as well consider the normalized white noise process Qw WD Q�1=2w which
has variance matrix equal to the identity and obviously generates the same Hilbert
space H.w/.

Note that if w has a singular covariance matrix, there are matrices A, which
are rectangular but with linearly independent columns, such that AA0 D Q is a
rank factorization. In this case define u WD A�Lw where �L denotes left-inverse
and set Qw WD Au where the dimension of u is equal to the rank of Q. Since .I �
AA�L/Q D .I � AA�L/AA0 D 0, the difference w � Qw D .I � AA�L/w has
covariance zero and hence Qw D w D Au almost surely. It follows that H.w/ D H.u/,
i.e., the space can also be generated by a normalized white noise u of a smaller
dimension.

The elements (linear functionals) in the Hilbert space H.w/ of a white noise
process have an explicit and particularly simple form. The following representation
theorem will describe their structure. Although rather elementary, this result will
turn out to be extremely useful.

Theorem 3.5.1. Let w be an m-dimensional normalized white noise process. The
linear functionals � 2 H.w/ have the form
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� D
C1X

sD�1
f .�s/w.s/; f 2 `2

m; (3.40)

where the function f is uniquely determined by �. The linear map Iw W `2
m ! H.w/

defined by Eq. (3.40) is unitary and transforms the translation operator T in `2
m into

the shift U acting on random variables of H.w/, namely, if ŒT t f �.s/ D f .t C s/,
then

�.t/ WD Ut � D
C1X

sD�1
f .t � s/w.s/ D Iw.T t f /: (3.41)

Note that we have been abusing notations as the symbol Iw denotes a transfor-
mation which strictly speaking is not a stochastic integral (but is the discrete-time
analog of one).

Proof. The proof is particularly simple in the scalar case. Then the representation
formula (3.40) follows readily from the fact that the random variables fw.s/ j s 2 Zg
form an orthonormal basis for the Hilbert space H.w/. In fact,

f .�s/ D Ef�w.s/g

is just the s-th Fourier coefficient of � with respect to that basis. It is well-known
that these coefficients are unique and form a square summable sequence. The last
part of the statement also follows since U�t w.s/ D w.s � t / and

Ef�.t/w.s/g D hUt �; w.s/i D h�;U�t w.s/i D f .t � s/:

We shall leave the details of the generalization of this argument to the vector case to
the reader. ut

Note that the continuous-time analog of Theorem 3.5.1 is contained as a
particular case in Theorem 3.1.3: we just need to take � to be (the orthogonal
stochastic measure defined by) an m-dimensional normalized Wiener process w.
Then the following is just an immediate corollary of that result.

Corollary 3.5.2. Let w be an m-dimensional normalized Wiener process. The
linear functionals � 2 H.dw/ have the form

� D
Z C1

�1
f .�s/dw.s/; f 2 L2

m.R/; (3.42)

where the function f is uniquely determined by �. The linear map Iw W L2
m.R/ !

H.dw/ defined by Eq. (3.42) is unitary and transforms the translation operator Tt

in L2
m into the shift Ut acting on random variables of H.dw/, namely, if ŒTt f �.s/ D

f .t C s/, then
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�.t/ WD Ut � D
Z C1

�1
f .t � s/dw.s/ D Iw.Ttf /: (3.43)

For white noise processes we have two representation theorems of H.w/: the
general spectral representation Theorem 3.4.1 and the time-domain representation
that we have just seen. These two representations in the frequency and in the time
domain are related by the Fourier transform.

3.5.1 The Fourier Transform

Related to the well-known fact that the trigonometric functions

et .�/ WD ei� t ; t 2 Z;

form a complete orthonormal system (an orthonormal basis) in L2.Œ�
; 
�; d�
2


/, is
the following basic result in harmonic analysis (the so-called Fourier-Plancherel
Theorem).

Theorem 3.5.3. The Fourier transform

F W `2
m ! L2

m.Œ�
; 
�;
d�

2

/; F.f / WD

C1X
tD�1

e�i� t f .t/;

where the sum is convergent for all f 2 `2
m in the topology of the space

L2
m.Œ�
; 
�; d�

2

/, is a norm preserving and surjective map, i.e., a unitary map.

The norm preserving property

C1X
tD�1

jf .t/j2 D
Z 


�


j Of .�/j2 d�

2

; where Of D F.f /;

is known as Parseval’s identity. It is easy to check that this property holds
for functions (sequences) with compact support and, since these sequences are
obviously dense in `2

m, by invoking Theorem B.2.7 the theorem can be proved by the
same isometric extension argument used for the definition of the stochastic integral.

One reason for the importance of the Fourier transform in the study of dynamical
models of time sequences, is the fact that the translation operator T in `2

m,

T .f /.t/ WD f .t C 1/

corresponds, in the frequency domain, to the algebraic operation of multiplication
by the scalar exponential function e W � ! ei� , acting on L2

m.Œ�
; 
�; d�
2


/. In other
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words F.Tf / D MeF.f / where Me is the multiplication operator by the function
e; i.e. .Me

Of /.�/ D ei� Of .�/. The importance of this property and its numerous
consequences in the study of deterministic signals and systems are well established.

In the continuous time case there is a perfectly analogous version of Theo-
rem 3.5.3 which is also known as the Fourier-Plancherel Theorem.

Theorem 3.5.4. Let I denote the imaginary axis. The Fourier transform

F W L2
m.R/ ! L2

m.I;
d!

2

/; F.f / WD

Z C1

�1
e�i!t f .t/ dt;

where the integral is defined as a limit in the topology of the space L2
m.I; d!

2

/, is

well-defined for all f 2 L2
m.R/ and is a norm preserving and surjective map, i.e., a

unitary map.

Again the norm preserving property

Z C1

�1
jf .t/j2 dt D

Z C1

�1
j Of .i!/j2 d!

2

; where Of D F.f /;

is known as Parseval’s identity. The translation operator Tt , t 2 R, acting in
L2

m.R/, is defined as

Tt .f /.s/ WD f .t C s/; s 2 R;

and corresponds, in the frequency domain, to the algebraic operation of multipli-
cation by the scalar exponential function et W i! ! ei!t , acting on L2

m.I; d!
2


/. In
other words, F.Ttf / D MetF.f / where Met is multiplication by the function et ;
i.e., .Met

Of /.i!/ D ei!t Of .i!/. The family of translations fTt ; t 2 Rg forms a
group of unitary operators in L2

m.R/ which, via the Fourier transform, corresponds
(in fact is unitarily equivalent) to the unitary group of multiplication operators by
ei!t acting in L2

m.I; d!
2


/.
The following fundamental representation theorem relates the spectral repre-

sentation of random functionals of white noise in H.w/ to the Fourier-Plancherel
transform.

Theorem 3.5.5. Let w be an m-dimensional normalized white noise process. The
unitary representation map Iw W `2

m ! H.w/ defined by Eq. (3.40) admits a
factorization as the composite map

Iw D I OwF (3.44)

i.e., the frequency-domain representative function of any linear functional in H.w/

is just the Fourier transform of the time-domain function f in (3.40). In other words
� D I Ow. Of / D Iw.f / if and only if Of D Ff . In fact, the two unitary representation
maps I Ow and Iw are related as in the commutative diagram
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Proof. The frequency-domain isomorphism I Ow maps trigonometric polynomials
p.�/ D PM

�N f .�k/ei�k into finite linear combinations � D PM
�N f .�k/w.k/ D

Iw.f /, where f is an `2 function of bounded support. It is obvious that p.�/ DPN
�M f .k/e�i�k is the Fourier transform of f , i.e., p D Of . Hence it fol-

lows that

Iw.f / D I Ow. Of / D I Ow.Ff /

for the dense linear manifold of finite support functions f . Since both maps Iw and
I OwF are unitary, (3.44) follows. The rest follows by well-know properties of the
Fourier transform.

ut
The continuous-time analog is immediate and will be stated without proof.

Theorem 3.5.6. Let w be an m-dimensional normalized Wiener process. The
unitary representation map Iw W L2

m.R/ ! H.dw/ defined in Corollary 3.5.2
factors exactly as the composite map (3.44) in Theorem 3.5.5. In other words,
the representative function in the frequency-domain of any linear functional in
H.dw/ is just the Fourier transform of the time-domain function f in (3.42). Hence,
� D I Ow. Of / D Iw.f / if and only if Of D Ff . In fact, the two representation maps
I Ow and Iw are related as in the commutative diagram
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3.6 Spectral Representation of Stationary Increment
Processes

Let IŒ!1;!2�.i!/ be the indicator function of a finite subinterval Œi!1; i!2� of the
imaginary axis (equal to one for ! 2 Œ!1; !2� and zero otherwise) and consider the
elementary identity

e�i!2t � e�i!1t

�2
it
D .F�1IŒ!1;!2�/.�t / : (3.45)

Since trivially these are square integrable functions, given a p-dimensional Wiener
process dw we can define a process Ow on the imaginary axis I with increments

Ow.i!2/ � Ow.i!1/ D
Z 1

�1
e�i!2t � e�i!1t

�2
it
dw.t/: (3.46)

Then, since F�1 is unitary (Theorem 3.5.4), and hence hF�1 Of ;F�1 Ogi1 D h Of ; Ogi2,
with h�; �i1 and h�; �i2 the inner products in L2

p.R/ and L2
p.I; d!

2

/ respectively, (3.45)

and (3.46) imply that

EfŒ Ow.i!2/ � Ow.i!1/�Œ Ow.i!4/ � Ow.i!3/��g D Ip

Z 1

�1
IŒ!1;!2�.i!/IŒ!3;!4�.i!/

d!

2

;

and hence it follows that the process Ow has orthogonal increments. In fact,

Efd Owd Ow�g D Ip

d!

2

: (3.47)

Therefore, d Ow is a p-dimensional Wiener process on the imaginary axis.
Now, (3.46) may be written

Z 1

�1
IŒ!1;!2�.i!/d Ow.i!/ D

Z 1

�1
.F�1IŒ!1;!2�/.�t /dw.t/;

and, since the indicator functions are dense in L2, one has, for all f 2 L2.R/,

Z 1

�1
Of .i!/d Ow D

Z 1

�1
f .�t /dw ; (3.48)

the function Of being the Fourier-Plancherel transform of f . Incidentally, we
have just proven that the spectral representation map I Ow W L2

p.I; d!
2


/ ! H.dw/

defined by

I Ow Of D
Z 1

�1
Of .i!/d Ow.i!/
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factorizes as in (3.44) in Theorem 3.5.6. Dually, by choosing f to be the indicator
function of the interval Œt1; t2�, (3.48) yields

w.t2/ � w.t1/ D
Z 1

�1
ei!t2 � ei!t1

i!
d Ow.i!/: (3.49)

This is a particular instance of spectral representation of a stationary increments
process; in fact, of the stationary increments (Wiener) process dw [77]. Note that the
spectral measure of dw is also of the Wiener type, being precisely the orthogonal
random measure d Ow defined in (3.46).

More generally, one can prove the following result.

Theorem 3.6.1. Every R
m-valued process with finite second moments and contin-

uous stationary increments d z admits a spectral representation

z.t/ � z.s/ D
Z C1

�1
ei!t � ei!s

i!
d Oz.i!/ ; t; s 2 R; (3.50)

where d Oz is an m-dimensional orthogonal random measure (or an orthogonal
increments process) on the imaginary axis I uniquely determined by d z. The matrix
spectral distribution of d z, defined by

Efd Oz.i!/d Oz.i!/�g D dZ.i!/; (3.51)

is a (not necessarily finite) nonnegative definite Hermitian matrix measure on the
Borel sets of the imaginary axis.

The orthogonal stochastic measure d Oz will also be called the Fourier transform
of d z.

Example 3.6.2. As an example consider the process d z defined as the output of the
linear stochastic system

(
dx D Axdt C Bdw

dz D Cxdt C Ddw
; (3.52)

where all eigenvalues of the matrix A have negative real parts. In the time
domain (3.52) has the following solution

x.t/ D
Z t

�1
eA.t�	/Bdw; (3.53a)

z.t/ � z.s/ D
Z t

s

Cx.	/d	 C DŒw.t/ � w.s/�: (3.53b)
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Applying (3.48) to the first of these equations, we obtain

x.t/ D
Z 1

�1
ei!t .i!I � A/�1Bd Ow; (3.54)

which then inserted into (3.53b) together with (3.49) yields the spectral representa-
tion

z.t/ � z.s/ D
Z 1

�1
ei!t � ei!s

i!
d Oz.i!/; (3.55)

where d Oz D W.i!/d Ow.i!/, the matrix function W being the transfer function of
the system (3.52) given by

W.s/ D C.sI � A/�1B C D; (3.56)

which is the Laplace transform of the impulse response of the system (3.52). In this
example d z has an absolutely continuous spectral distribution

Efd Ozd Oz�g D ˆ.i!/
d!

2

;

where the spectral density ˆ is given by ˆ.s/ D W.s/W.�s/0: Note that if
D ¤ 0 the spectral distribution is not a finite measure and hence an expression
like

R1
�1 ei!t d Oz does not make sense.

Proposition 3.6.3. If the spectral measure d Oz in Theorem 3.6.1 is finite, the process
d z has a (stationary) derivative in mean square, i.e. d z.t/ D y.t/dt, with

y.t/ D
Z C1

�1
ei!t d Oz; (3.57)

in which case d Oy D d Oz.

Proof. Let y.t/ be defined as in (3.57), then

z.t C h/ � z.t/

h
� y.t/ D

Z C1

�1
�h.i!/ei!t d Oz.i!/ ;

where the function

�h.i!/ WD ei!h � 1

i!h
� 1 D ei!h=2 sin.!h=2/

!h=2
� 1

converges boundedly pointwise to zero for h ! 0. ut
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3.7 Multiplicity and the Module Structure of H.y/

Since the early 1960s there has been considerable interest in representations of a
process y as a linear function of a random process of the simplest possible structure,
by which term we shall here typically mean white noise, i.e., representations of the
form

y.t/ D
NX

kD1

C1X
sD�1

hk.t; s/wk.s/; (3.58)

where hk.t; �/ are deterministic functions, the wk are generally non-stationary,
uncorrelated white noise processes (i.e. Efwk.t/wj .s/g D 0 for all k; j and t ¤ s)
and the series is convergent in mean square. Special representations of this kind
where the kernel function is causal (i.e. hk.t; s/ D 0 for t > s) have a special
importance and motivated the work of H. Wold [314], who discovered the so called
Wold decomposition, a causal representation of the type (3.58), which is valid for
the special class of purely non deterministic stationary processes. We shall define
and study these representations in detail in Chap. 4.

The smallest integer N (i.e. the smallest number of independent white noises) for
which a representation of the type (3.58) holds is commonly called the multiplicity
of the process y. As we shall demonstrate in this section, this is in harmony with
the formal definition of multiplicity to be given on page 92. It can be shown,
using spectral theory of linear operators in Hilbert space, that under very general
conditions representations of the type (3.58) for second-order processes indeed
exist. In general however the integer N in the sum may be infinite even for a scalar
process y. Moreover, the support Tk � Z of each white noise process wk (i.e. the
subset of Z where the variance function �k.t/ D E wk.t/2 is nonzero) is in general
not the whole line and in fact may depend on k so the number of terms wk in the
sum in general varies with t . However one can always arrange things in such a way
that T1 	 T2 	 : : : 	 TN . With this proviso, we may rewrite (3.58) in matrix form

y.t/ D
C1X

sD�1
H.t; s/w.s/ (3.59)

in terms of an N -dimensional nonstationary white noise process w. If

H.y/ D
NM

kD1

H.wk/ D H.w/; (3.60)

the process will be called orthogonalizable. This means that the components wk.t/,
k D 1; 2; : : : ; N , t 2 Z, form an orthogonal basis in H.y/.
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It turns out that, when y is wide-sense stationary and admits a representation
of the type (3.58), then the multiplicity N is always finite and smaller or equal to
the dimension m of y.t/. The white noises wk can also be taken to be stationary,
and all supports Tk coincide with the entire time axis Z. This is so due to the
fact that y.t/ propagates in time by the action of the unitary operator U, called the
shift of the process, which was defined in Sect. 2.5.1. This fact can be justified via
traditional spectral theory of unitary operators as done in, e.g., [270], but has more
to do with a basic algebraic structure induced on H.y/ by the action of the operator
U. This algebraic structure is essentially a module structure which, as pointed out
by Kalman, underlies many basic constructions of linear systems theory.

A module is an algebraic structure which generalizes vector spaces. It is a set
with two binary operations: addition, with respect to which it is an ordinary Abelian
Group, and multiplication by scalars. The fundamental difference is that the scalars
live in a ring R, instead of a field like R or C. A good survey of module theory
with a view to applications to system theory can be found in the first chapter of
Fuhrmann’s book [104].

In this section we shall discuss the notion of multiplicity of a stationary process
from a module theoretic point of view. This approach will reveal the true essence of
the concept and hopefully clarify some misconceptions that are rather common in
the literature, in particular in relation to the notions of rank and spectral factorization
of stationary processes.

3.7.1 Definition of Multiplicity and the Module Structure of
H.y/

An important property of the Hilbert space H.y/ generated by a stationary stochastic
process y is to be finitely generated by the shift U in the following sense: there is
a finite number of generators namely elements y1; y2; : : : ; ym 2 H.y/ which are
“cyclic” for the shift, i.e., have the property

spanfUt yk j k D 1; 2; : : : ; m; t 2 Zg D H.y/; (3.61)

where span means closed linear hull. The cardinality of the smallest set of generators
is called the multiplicity of the shift U on the Hilbert space H.y/; see, e.g., [133],
[104, p. 105]. We shall call this number the multiplicity of the process y. Note that
there are m natural generators in H.y/, namely yk D yk.0/; k D 1; 2; : : : ; m, and
hence a process of dimension m has a finite multiplicity, less than or equal to m.

The main fact here is that the shift operator acting on the Hilbert space H.y/

induces a natural module structure on this space. The concept of multiplicity has to
do with the algebraic concept of basis in module theory.

The starting point to see this is the observation that there is a natural multiplica-
tion p � � between trigonometric polynomials
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p.ei� / WD
k1X

kDk0

pkeik� ; k0 � k1; 2 Z;

and elements � 2 H.y/, defined as

p � � WD p.U/ � � D
2
4 k1X

kDk0

pkU
k

3
5 �: (3.62)

It is trivial to check that trigonometric polynomials form a ring and that the algebraic
module axioms are satisfied. Naturally, the ring of trigonometric polynomials should
be extended in order to make multiplication by scalars a continuous operation in
H.y/, which thereby becomes a Hilbert module. This is accomplished as follows.

Every element � 2 H.y/ has a spectral representation

� D
Z 


�


Of .ei� / d Oy.ei� /;

where Of 2 L2
mfŒ�
; 
�; dF g is the (unique dF -almost everywhere) spectral

representative of � with respect to d Oy (Theorem 3.3.3). Using this representation
one can write (3.62) in the spectral domain as

p � � D
Z 


�


p.ei� / Of .ei� / d Oy.ei� /:

The spectral representation map I Oy W L2
mfŒ�
; 
�; dF g ! H.y/, by which

each function Of 2 L2
mfŒ�
; 
�; dF g is mapped into the Wiener integralR 


�

Of .ei� / d Oy.ei� /, is unitary and satisfies the intertwining relation

I OyMei� D UI Oy ;

where Mei� is the multiplication operator by the function � ! ei� . Hence I Oy is an
algebraic unitary isomorphism of the modules H.y/ and L2

mfŒ�
; 
�; dF g having
the ring of trigonometric polynomials as a ring of scalars.

Now, it is a well-known consequence of Weierstrass’ Approximation Theorem
that the trigonometric polynomials are dense in the sup norm in the space of
continuous functions on the interval Œ�
; 
�. Consequently, it follows by Lusin’s
theorem (see e.g. [280, pp. 56–57]) that any function ' 2 L1Œ�
; 
� is the limit in
L1 of sequences of trigonometric polynomials .pk/, and, since

����
Z 


�


Œ'.ei� / � pk.ei� /� Of .ei� / d Oy.ei� /

���� � k' � pkkL1k Of kL2
mfŒ�
;
�;dF g ! 0
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as k ! 1, we may define the product

'.U/ � � WD lim
k!1 pk.U/ � �; � 2 H.y/

for every ' in L1Œ�
; 
� as a limit in H.y/. Thereby L1Œ�
; 
� becomes the
extended ring of scalars by which we may multiply elements of H.y/. It is then
immediate to check that multiplication by scalars is continuous and thereby H.y/

becomes a bona fide Hilbert module.

Proposition 3.7.1. Endowed with the multiplication (3.62), H.y/ becomes a
Hilbert module, unitarily isomorphic, via the spectral representation map I Oy , to
L2

mfŒ�
; 
�; dFg as a L1Œ�
; 
�-module.

It follows readily from (3.61) that the module H.y/ is in fact free, as it admits
the m generators y1.0/; y2.0/; : : : ; ym.0/. These generators correspond under the
isomorphism to the m unit vector functions e1; e2; : : : ; em in L2

mfŒ�
; 
�; dFg,
where the k-th component of ek is identically equal to one while the others are
zero almost everywhere.

A submodule of an R-module M is a subset M0 � M which remains invariant
with respect to multiplication by elements of R, i.e., M0 D RM0. Accordingly a
subspace H � H.y/ is a submodule if it is invariant with respect to multiplication
by all elements of L1Œ�
; 
�. By continuity, this happens if and only if

span fUk�; � 2 H; k 2 Zg D H :

For this reason, submodules of H.y/ are called doubly invariant subspaces (for the
shift operator U). The module-theoretic concept of basis corresponds to a set of
generators of minimal cardinality. Hence the multiplicity of a stationary process is
just the dimension of a basis for the Hilbert module H.y/.

One would like to have a test to check if the generators y1.0/; y2.0/; : : : ; ym.0/

form a basis. It should of course be appreciated that this question is more subtle than
for vector spaces, since, for example, a module of dimension one can have infinitely
many proper submodules (still of dimension one). Consider for example a scalar
stationary white noise process w with spectral measure d Ow. It is obvious that w.0/

is a generator of H.w/; i.e., a basis for the Hilbert module H.w/. Let us then define
a stationary process y with spectral measure

d Oy WD I�d Ow;

where I� is the indicator of some proper Borel subset � � Œ�
; 
� of normalized
Lebesgue measure j�j

2

� 1. The question is if y.0/ is also a basis of H.w/. In a

vector space setting the answer would obviously be yes, but in the present setting
the answer is generally negative.

Proposition 3.7.2. Unless � has full Lebesgue measure, H.y/ is a doubly invariant
subspace properly contained in H.w/. In fact, for any ' 2 L1Œ�
; 
�, the
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stationary process y with spectral measure d Oy WD 'd Ow generates the whole space,
i.e., H.y/ D H.w/, if and only if ' is nonzero almost everywhere in Œ�
; 
�.

Proof. The statement follows from a classical characterization of doubly invariant
subspaces of L2Œ�
; 
� due to Wiener, which can be found in, e.g., Helson’s
book [138, Theorem 2, p. 7], according to which all doubly invariant subspaces
are of the form I�L2Œ�
; 
�. Hence a doubly invariant subspace is the whole of
L2Œ�
; 
� if and only if � has full Lebesgue measure (equivalently, is nonzero
almost everywhere). Since every ' 2 L1Œ�
; 
� can be written as a product 'I�.'/

where �.'/ is the essential support of ', the result carries over to an arbitrary '. ut
Put in systems-theoretic language, a stochastic process generated by filtering a

white noise w with a filter ', cannot generate the whole space H.w/ unless ' has
constant rank (equal to one) almost everywhere on the unit circle Œ�
; 
�.

3.7.2 Bases and Spectral Factorization

We shall say that two jointly stationary vector processes u and y, which generate the
same Hilbert space are equivalent. In order to characterize equivalent processes we
shall introduce a concept which generalizes absolute continuity to matrix measures.

Definition 3.7.3. Let dF1 and dF2 be m � m respectively p � p positive matrix
measures on Œ�
; 
�. We say that dF1 is absolutely continuous with respect to dF2

(notation: dF1 
 dF2) if there is a measurable m � p matrix function M with rows
Mk , k D 1; 2; : : : ; m, belonging to L2

pfŒ�
; 
�; dF2g such that

dF1 D M.ei� /dF2M.ei� /� : (3.63)

If dF1 
 dF2 and dF2 
 dF1, we say that the two measures are equivalent and
write dF1 ' dF2. In this case, there also exist a measurable matrix function N with
rows Nj , j D 1; 2; : : : ; p, belonging to L2

mfŒ�
; 
�; dF1g, such that

dF2 D N.ei� /dF1N.ei� /� : (3.64)

Note that there may be nontrivial matrix functions Q such that, for example,
dF2 D Q.ei� /dF2Q.ei� /�, in which case OM WD MQ would also satisfy the
factorization relation (3.63). Hence the functions M and N in (3.63) and (3.64),
which hereafter will be called spectral factors (of dF1 with respect to dF2 and
conversely), need not be unique.

Lemma 3.7.4. Let u be a p-dimensional stationary processes with spectral distri-
bution measures dFu. Then, if H.y/ is a submodule (doubly invariant subspace)
of H.u/ with generators y1.0/; y2.0/; : : : ; ym.0/ 2 H.u/, the matrix spectral
distribution measure dFy of the process y.t/ D Ut y.0/ is absolutely continuous
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with respect to dFu. Conversely, if some m � m spectral distribution matrix dF

satisfies dF 
 dFu, then there is an m-dimensional process y jointly stationary
with u such that dFy D dF , and H.y/ � H.u/ is a doubly invariant subspace.
If two stationary processes y and u are equivalent, i.e., H.y/ D H.u/, then their
spectral distribution measures dFy and dFu are also equivalent.

Proof. If H.y/ D spanfyk.t/ I k D 1; : : : ; m; t 2 Zg � H.u/ is an invariant sub-
space, then the random vector of generators y.0/ D Œ y1.0/ y2.0/; : : : ; ym.0/ �0 for
H.y/ can be written as y.0/ D R 


�

M.ei� /d Ou for some matrix function M whose

rows belong to L2
pfŒ�
; 
�; dFug. Hence d Oy D M.ei� /d Ou and dFy 
 dFu readily

follows. Similarly, if H.u/ D spanfuk.t/ I k D 1; : : : ; p; t 2 Zg � H.y/ then
each random vector u.t/ has the spectral representation u.t/ D R 


�

ei� t N.ei� /d Oy

for some matrix function N whose rows belong to L2
pfŒ�
; 
�; dFyg and hence

dFu 
 dFy . Therefore H.y/ D H.u/ implies dFy ' dFu. Conversely, assume
there is an m � p matrix function M with rows Mk , k D 1; 2; : : : ; m, belonging to
L2

pfŒ�
; 
�; dFug such that

dF D M.ei� /dFuM.ei� /�;

and define the random spectral measure d Oy WD M.ei� /d Ou. Then the corresponding
stationary process y generates an invariant subspace of H.u/ and has spectral
distribution measure equal to dF . ut

The following theorem states that left-invertible spectral factors produce equiva-
lent processes.

Theorem 3.7.5. Let dFy be the spectral distribution measure of the process y, and
assume that dFu is a p � p positive matrix measure on Œ�
; 
� such that dFy 

dFu, i.e., there is a m � p matrix function M with rows Mk , k D 1; 2; : : : ; m,
belonging to L2

pfŒ�
; 
�; dFug such that

dFy D M.ei� /dFuM.ei� /� : (3.65)

Assume M is left-invertible, i.e., there is a p � m matrix function N with rows Nk ,
k D 1; 2; : : : ; p, belonging to L2

pfŒ�
; 
�; dFyg such that

N.ei� /M.ei� / D Ip; dFu-a.e. (3.66)

Then the stationary process u.t/ D R 


�

ei� t d Ou with random spectral measure

d Ou WD N.ei� /d Oy is jointly stationary with y, has spectral distribution measure
dFu, and is equivalent to y, i.e., H.y/ D H.u/. The above holds for all functions ON
in the same equivalence class (mod dFy)4 of the function N .

4In other words such that
R 


�
 Œ ON .ei� / � N.ei� /�dFy.ei� /Œ ON .ei� / � N.ei� /�� D 0.
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Proof. Since Efd Oud Ou�g D NdFyN � D NMdFuM �N � D dFu, the spectral
distribution measure of u is exactly dFu. Since each random vector u.t/ has the
spectral representation u.t/ D R 


�

ei� t N.ei� /d Oy, its components belong to H.y/

and obviously the shift of the process y acts also on the process u. This also implies
that H.u/ D spanfuk.t/ I k D 1; : : : ; p; t 2 Zg � H.y/. Hence we just need to
prove that the converse inclusion also holds. To this end, we shall show that, for
any function N satisfying (3.66), the difference Im � MN (Im being the m � m

identity matrix function) is equal to zero dFy-almost everywhere. If this is true,
then d Oy D MNd Oy D Md Ou, and, by the dual argument to the one used above, we
can conclude that H.y/ � H.u/. Notice now that from (3.65) and (3.66) we have

.Im � MN/dFy.Im � MN/� D .Im � MN/MdFuM �.Im � N �M �/ D 0

dFu-almost everywhere. Hence MN D Im dFy-almost everywhere. This concludes
the proof. ut

In linear algebra left-invertibility of a matrix is associated to a condition of full
column rank of the matrix. In order to make contact with this notion we shall need
to choose special dominating measures.

Lemma 3.7.6. Let the spectral distribution measure dFu of the process u be of the
diagonal type, i.e., dFu D diag fd�1; d�2; : : : ; d�pg with �k , k D 1; 2; : : : ; p,
positive Borel measures on Œ�
; 
�. Then fu1.0/; u2.0/; : : : ; up.0/g is a set of
generators of H.u/ of smallest cardinality, i.e., a basis for the module H.u/.

Proof. By assumption, Efd Oud Ou�g D dFu satisfies

Efd Oukd Ou�
j g D 0 for k ¤ j ;

and hence it follows that, for k ¤ j , uk.t/ D Ut uk.0/ and uj .s/ D Usuj .0/ are
orthogonal for all t; s 2 Z. Clearly the module generated by any proper subset of
fuk.0/; k D 1; 2; : : : ; pg has a nonzero orthogonal complement and must then be a
proper submodule of H.u/. Hence the random variables u1.0/; u2.0/; : : : ; up.0/ are
a minimal set of generators. ut

The lemma obviously holds also for the special case of scalar type measures,
which are of the form dFu D Ipd�.

Recall that the elements of every matrix measure dFy are absolutely continuous
with respect to some scalar Borel measure. There are many such measures, the
sum of the elements or the trace of dFy being simple examples. The special
case when one takes � to be the Lebesgue measure will be examined in the next
subsection. In any case, for any such scalar dominating measure, one can show that
dFy 
 dFu D Imd�, in the sense defined earlier and hence we shall have dFy D
M.ei� /M.ei� /�d� for some measurable matrix function M ; compare (3.65). The
matrix function ˆ.ei� / WD M.ei� /M.ei� /� for which

dFy D ˆd� (3.67)
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is called the spectral density matrix of dFy with respect to the scalar measure �.
It is a measurable �-a.e. Hermitian positive semidefinite m � m matrix function on
Œ�
; 
�.

The following is a finite-dimensional version of a fundamental result of spectral
theory of linear operators in Hilbert space, known as the Hellinger-Hahn Theorem.
The proof can be found in [104, Chapter 6].

Theorem 3.7.7. Let � be a scalar Borel measure such that dFy 
 Imd�.
Then there exists a diagonal matrix measure dM with nonzero diagonal entries
�1; : : : ; �p such that d�k D mk.ei� / d�, and the following statements hold:

(i) �1 � �2 � : : : � �p

(ii) There exists a measurable m � p matrix function H.ei� / such that

H.ei� /�H.ei� / D Ip; �-a.e. on Œ�
; 
�; (3.68)

for which dFy D H.ei� /dMH.ei� /�.

The diagonal matrix measure dM D diag fm1.ei� /; : : : ; mp.ei� /gd� with the
properties (i) and (ii) is unique modulo equivalence with respect to scalar measures.
In particular, the integer p is uniquely determined by dFy .

Clearly, in view of (3.68), the matrix H.ei� / must be left-invertible �-a.e. Let
H �L be any left inverse and define the stochastic p-dimensional vector measure
d Ou WD H �Ld Oy. It follows that d Ou has the diagonal spectral distribution dM , and,
by Theorem 3.7.5 and Lemma 3.7.6, the components of the corresponding random
vector u.0/ WD R

H �L.ei� /d Oy form a minimal set of generators for H.y/. Hence p

is the multiplicity of y.

Definition 3.7.8. A process y has uniform multiplicity p if the measures
�1; : : : ; �p are all mutually absolutely continuous. Equivalently, the scalar densities
mk.ei� /, k D 1; : : : ; p, all have the same support.

The following theorem provides a linear algebra characterization of uniform
multiplicity.

Theorem 3.7.9. Let ˆ be the spectral density of dFy with respect to a scalar
dominating measure �. Then the stationary process y has uniform multiplicity p

if and only if

rank ˆ.ei� / D p; �-a.e. on Œ�
; 
�: (3.69)

In particular, the components y1.0/; y2.0/; : : : ; ym.0/ form a basis for the module
H.y/ if and only if the spectral density of Fy with respect to any dominating scalar
measure � has constant rank m �-almost everywhere.

Proof. (only if): Assume the process has uniform multiplicity and let �.ei� / WD
diag fm1.ei� /; : : : ; mp.ei� /g. Then ˆ.ei� / D H.ei� /�.ei� /H.ei� /� has �-a.e.
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constant rank equal to the integer p in (3.68). (if): Just note that, by (3.68), the
rank of H.ei� / must be constant and equal to p �-a.e. Hence �.ei� / has pointwise
the same rank as ˆ.ei� /, which, by assumption, is �-a.e. constant and equal to p.
Therefore the multiplicity is uniform. ut

3.7.3 Processes with an Absolutely Continuous Distribution
Matrix

An important special case in the analysis above occurs when � is the normalized
Lebesgue measure on Œ�
; 
�. Recall that a p-dimensional (orthonormal) white
noise process w is one for which dFw.�/ D Ip

d�
2


.

Definition 3.7.10. We shall say that y is a (stationarily) orthonormalizable process
if there is a white noise process w, jointly stationary with y, such that H.y/ D H.w/.

Clearly we can express each scalar component of an orthonormalizable process y

in terms of the orthonormal basis fw.t/I t 2 Zg, thereby obtaining a representation
of the form

y.t/ D
pX

kD1

C1X
sD�1

hk.t � s/wk.s/; (3.70)

where the dependence of h on t �s is a consequence of stationarity. In fact, since the
p scalar components of w are orthogonal, y has exactly multiplicity p D dimŒw.t/�.
Orthonormalizable processes are just the class of second-order processes for which
the multiplicity can be computed as the rank, Lebesgue-almost everywhere, of a
certain matrix function. Hence we have the following characterization.

Corollary 3.7.11. A stationary process is orthonormalizable if and only if its
spectral distribution dFy is absolutely continuous with respect to the Lebesgue
measure, i.e., dFy D ˆ d�=2
 where the spectral density ˆ has constant rank,
say p, almost everywhere on Œ�
; 
�. The multiplicity of y is equal to the rank of
ˆ.ei� / a.e. on Œ�
; 
�. The spectral density ˆ of an orthonormalizable process of
rank p admits m � p spectral factors W such that

ˆ.ei� / D W.ei� /W.ei� /�; (3.71)

which are (left-invertible) of constant rank p almost everywhere.

Whenever a stationary process admits a spectral density (in particular for
orthonormalizable processes) with respect to the Lebesgue measure, the rank a.e.
of ˆ is commonly referred to as the rank of the process. As we have seen, in this
case the rank of y is just the same as the multiplicity of the process.
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A special case of orthonormalizable processes are processes which are causally
orthonormalizable in the sense that they are causally equivalent to a white noise; i.e.,

H�
t .y/ D H�

t .w/; t 2 Z; (3.72)

where H�
t .y/ denotes the Hilbert space spanned by the past random variables of

the process at time t , fyk.s/ I s < t; k D 1; : : : ; mg. These processes and the
associated spectral factorization problem will be studied in much detail in the
context of prediction theory and are normally called purely non-deterministic, or
linearly regular in the Russian literature. We anticipate that a fundamental result
of Paley and Wiener implies that the spectral density of a purely non-deterministic
process y must admit analytic spectral factors (in H 2). We shall not enter into this
subject now. We just remark that pure non-deterministic property of y has (among
other things) to do with the existence of analytic spectral factors and has essentially
nothing to do with rank or multiplicity.

In particular, the concept of a “full-rank process” and the notion of a purely non-
deterministic (or regular) process, often confused in the literature, have little to do
with each other. In fact, the notion of rank and the conditions of Theorem 3.7.9 apply
to a much wider class of stationary processes. For example a full-rank process may
be purely deterministic and a purely non-deterministic process may well be rank-
deficient.

3.8 Bibliographical Notes

Most of the material in this chapter is classical. The spectral representation
theorem is due to Cramèr [64–66]; see also the work of his former student K.
Karhunen [164, 165] and of Kolmogorov [170]. The proof given here is adapted
from [117, p. 203]. A more direct approach in [270] uses the full power of the
spectral representation of unitary groups in Hilbert space. In relation to this, it has
been remarked by J.L. Doob [77, pp. 635–636] that the stochastic integral, first
introduced by Wiener in [304], was defined in exactly the same way as the spectral
integrals known in the spectral theory of self-adjoint operators in Hilbert spaces.
The spectral representation of stationary processes could then be seen as a chapter
of spectral theory in Hilbert spaces. For this reason most of the abstract properties
of the pair .H.y/;U / which are used in this book are also valid for any pair
.H;U / where, instead of a stationary process on a probability space, one has just a
(separable) Hilbert space H and a unitary operator U on H of finite multiplicity.

The concept of multiplicity can be defined for more general classes of processes
than stationary, see e.g. [69, 142]. Multiplicity theory of random processes is an
old subject going back to the work of Levy [184], Cramèr [67–70], Hida [142]
and others. These references consider continuous-time processes. Here we have
restricted the analysis to discrete time for simplicity, but all what we have said can
be translated to continuous time without difficulty. The module theory of Sect. 3.7
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appears in [253] and is inspired by Fuhrmann’s book [104], where it is introduced
for self-adjoint operators; see Chapter II, especially pp. 101–102. The rank condition
of Theorem 3.7.6 explains in particular why spectral factorization of purely non-
deterministic stationary processes must be of “constant rank”, a fact which may
appear rather mysterious from the way it is normally introduced in the literature.
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