
Conditional Probability
and Conditional
Expectation

3
3.1. Introduction

One of the most useful concepts in probability theory is that of conditional prob-
ability and conditional expectation. The reason is twofold. First, in practice, we
are often interested in calculating probabilities and expectations when some par-
tial information is available; hence, the desired probabilities and expectations are
conditional ones. Secondly, in calculating a desired probability or expectation it is
often extremely useful to first “condition” on some appropriate random variable.

3.2. The Discrete Case

Recall that for any two events E and F , the conditional probability of E given F

is defined, as long as P(F) > 0, by

P(E|F) = P(EF)

P (F )

Hence, if X and Y are discrete random variables, then it is natural to define the
conditional probability mass function of X given that Y = y, by

pX|Y (x|y) = P {X = x|Y = y}

= P {X = x,Y = y}
P {Y = y}

= p(x, y)

pY (y)

97



98 3 Conditional Probability and Conditional Expectation

for all values of y such that P {Y = y} > 0. Similarly, the conditional probabil-
ity distribution function of X given that Y = y is defined, for all y such that
P {Y = y} > 0, by

FX|Y (x|y) = P {X � x|Y = y}
=
∑

a�x

pX|Y (a|y)

Finally, the conditional expectation of X given that Y = y is defined by

E[X|Y = y] =
∑

x

xP {X = x|Y = y}

=
∑

x

xpX|Y (x|y)

In other words, the definitions are exactly as before with the exception that
everything is now conditional on the event that Y = y. If X is independent of Y ,
then the conditional mass function, distribution, and expectation are the same as
the unconditional ones. This follows, since if X is independent of Y , then

pX|Y (x|y) = P {X = x|Y = y}
= P {X = x}

Example 3.1 Suppose that p(x, y), the joint probability mass function of X

and Y , is given by

p(1,1) = 0.5, p(1,2) = 0.1, p(2,1) = 0.1, p(2,2) = 0.3

Calculate the conditional probability mass function of X given that Y = 1.

Solution: We first note that

pY (1) =
∑

x

p(x,1) = p(1,1) + p(2,1) = 0.6

Hence,

pX|Y (1|1) = P {X = 1|Y = 1}

= P {X = 1, Y = 1}
P {Y = 1}

= p(1,1)

pY (1)

= 5

6
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Similarly,

pX|Y (2|1) = p(2,1)

pY (1)
= 1

6
�

Example 3.2 If X1 and X2 are independent binomial random variables with
respective parameters (n1,p) and (n2,p), calculate the conditional probability
mass function of X1 given that X1 + X2 = m.

Solution: With q = 1 − p,

P {X1 = k|X1 + X2 = m} = P {X1 = k,X1 + X2 = m}
P {X1 + X2 = m}

= P {X1 = k,X2 = m − k}
P {X1 + X2 = m}

= P {X1 = k}P {X2 = m − k}
P {X1 + X2 = m}

=

(
n1

k

)

pkqn1−k

(
n2

m − k

)

pm−kqn2−m+k

(
n1 + n2

m

)

pmqn1+n2−m

where we have used that X1 + X2 is a binomial random variable with parame-
ters (n1 + n2,p) (see Example 2.44). Thus, the conditional probability mass
function of X1, given that X1 + X2 = m, is

P {X1 = k|X1 + X2 = m} =

(
n1

k

)(
n2

m − k

)

(
n1 + n2

m

) (3.1)

The distribution given by Equation (3.1), first seen in Example 2.34, is known
as the hypergeometric distribution. It is the distribution of the number of blue
balls that are chosen when a sample of m balls is randomly chosen from an
urn that contains n1 blue and n2 red balls. ( To intuitively see why the condi-
tional distribution is hypergeometric, consider n1 + n2 independent trials that
each result in a success with probability p; let X1 represent the number of suc-
cesses in the first n1 trials and let X2 represent the number of successes in the
final n2 trials. Because all trials have the same probability of being a success,
each of the

(
n1+n2

m

)
subsets of m trials is equally likely to be the success trials;

thus, the number of the m success trials that are among the first n1 trials is a
hypergeometric random variable.) �
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Example 3.3 If X and Y are independent Poisson random variables with re-
spective means λ1 and λ2, calculate the conditional expected value of X given
that X + Y = n.

Solution: Let us first calculate the conditional probability mass function of
X given that X + Y = n. We obtain

P {X = k|X + Y = n} = P {X = k,X + Y = n}
P {X + Y = n}

= P {X = k,Y = n − k}
P {X + Y = n}

= P {X = k}P {Y = n − k}
P {X + Y = n}

where the last equality follows from the assumed independence of X and Y .
Recalling (see Example 2.36) that X + Y has a Poisson distribution with mean
λ1 + λ2, the preceding equation equals

P {X = k|X + Y = n} = e−λ1λk
1

k!
e−λ2λn−k

2

(n − k)!
[
e−(λ1+λ2)(λ1 + λ2)

n

n!
]−1

= n!
(n − k)!k!

λk
1λ

n−k
2

(λ1 + λ2)n

=
(

n

k

)(
λ1

λ1 + λ2

)k (
λ2

λ1 + λ2

)n−k

In other words, the conditional distribution of X given that X + Y = n, is the
binomial distribution with parameters n and λ1/(λ1 + λ2). Hence,

E{X|X + Y = n} = n
λ1

λ1 + λ2
�

Example 3.4 Consider an experiment which results in one of three possible
outcomes with outcome i occurring with probability pi, i = 1,2,3,

∑3
i=1 pi = 1.

Suppose that n independent replications of this experiment are performed and let
Xi, i = 1,2,3, denote the number of times outcome i appears. Determine the
conditional expectation of X1 given that X2 = m.
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Solution: For k � n − m,

P {X1 = k|X2 = m} = P {X1 = k,X2 = m}
P {X2 = m}

Now if X1 = k and X2 = m, then it follows that X3 = n − k − m.
However,

P {X1 = k, X2 = m, X3 = n − k − m}

= n!
k!m!(n − k − m)!p

k
1p

m
2 p

(n−k−m)
3 (3.2)

This follows since any particular sequence of the n experiments having out-
come 1 appearing k times, outcome 2 m times, and outcome 3 (n −
k − m) times has probability pk

1pm
2 p

(n−k−m)
3 of occurring. Since there are

n!/[k!m!(n − k − m)!] such sequences, Equation (3.2) follows.
Therefore, we have

P {X1 = k|X2 = m} =
n!

k!m!(n − k − m)! pk
1p

m
2 p

(n−k−m)
3

n!
m!(n − m)! pm

2 (1 − p2)
n−m

where we have used the fact that X2 has a binomial distribution with parameters
n and p2. Hence,

P {X1 = k|X2 = m} = (n − m)!
k!(n − m − k)!

(
p1

1 − p2

)k (
p3

1 − p2

)n−m−k

or equivalently, writing p3 = 1 − p1 − p2,

P {X1 = k|X2 = m} =
(

n − m

k

)(
p1

1 − p2

)k (

1 − p1

1 − p2

)n−m−k

In other words, the conditional distribution of X1, given that X2 = m, is bino-
mial with parameters n − m and p1/(1 − p2). Consequently,

E[X1|X2 = m] = (n − m)
p1

1 − p2
�

Remarks (i) The desired conditional probability in Example 3.4 could also
have been computed in the following manner. Consider the n − m experiments
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that did not result in outcome 2. For each of these experiments, the probability
that outcome 1 was obtained is given by

P {outcome 1|not outcome 2} = P {outcome 1,not outcome 2}
P {not outcome 2}

= p1

1 − p2

It therefore follows that, given X2 = m, the number of times outcome 1 occurs is
binomially distributed with parameters n − m and p1/(1 − p2).

(ii) Conditional expectations possess all of the properties of ordinary expecta-
tions. For instance, such identities as

E

[
n∑

i=1

Xi |Y = y

]

=
n∑

i=1

E[Xi |Y = y]

remain valid.

Example 3.5 There are n components. On a rainy day, component i will func-
tion with probability pi ; on a nonrainy day, component i will function with prob-
ability qi , for i = 1, . . . , n. It will rain tomorrow with probability α. Calculate the
conditional expected number of components that function tomorrow, given that it
rains.

Solution: Let

Xi =
{

1, if component i functions tomorrow
0, otherwise

Then, with Y defined to equal 1 if it rains tomorrow, and 0 otherwise, the de-
sired conditional expectation is obtained as follows.

E

[
n∑

t=1

Xi |Y = 1

]

=
n∑

i=1

E[Xi |Y = 1]

=
n∑

i=1

pi �

3.3. The Continuous Case

If X and Y have a joint probability density function f (x, y), then the conditional
probability density function of X, given that Y = y, is defined for all values of y
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such that fY (y) > 0, by

fX|Y (x|y) = f (x, y)

fY (y)

To motivate this definition, multiply the left side by dx and the right side by
(dx dy)/dy to get

fX|Y (x|y)dx = f (x, y) dx dy

fY (y) dy

≈ P {x � X � x + dx, y � Y � y + dy}
P {y � Y � y + dy}

= P {x � X � x + dx|y � Y � y + dy}
In other words, for small values dx and dy, fX|Y (x|y)dx is approximately the
conditional probability that X is between x and x + dx given that Y is between y

and y + dy.
The conditional expectation of X, given that Y = y, is defined for all values of

y such that fY (y) > 0, by

E[X|Y = y] =
∫ ∞

−∞
xfX|Y (x|y) dx

Example 3.6 Suppose the joint density of X and Y is given by

f (x, y) =
{

6xy(2 − x − y), 0 < x < 1,0 < y < 1

0, otherwise

Compute the conditional expectation of X given that Y = y, where 0 < y < 1.

Solution: We first compute the conditional density

fX|Y (x|y) = f (x, y)

fY (y)

= 6xy(2 − x − y)
∫ 1

0 6xy(2 − x − y)dx

= 6xy(2 − x − y)

y(4 − 3y)

= 6x(2 − x − y)

4 − 3y
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Hence,

E[X|Y = y] =
∫ 1

0

6x2(2 − x − y)dx

4 − 3y

= (2 − y)2 − 6
4

4 − 3y

= 5 − 4y

8 − 6y
�

Example 3.7 Suppose the joint density of X and Y is given by

f (x, y) =
{

4y(x − y)e−(x+y), 0 < x < ∞,0 � y � x

0, otherwise

Compute E[X|Y = y].
Solution: The conditional density of X, given that Y = y, is given by

fX|Y (x|y) = f (x, y)

fY (y)

= 4y(x − y)e−(x+y)

∫∞
y

4y(x − y)e−(x+y) dx
, x > y

= (x − y)e−x

∫∞
y

(x − y)e−x dx

= (x − y)e−x

∫∞
0 we−(y+w) dw

, x > y (by letting w = x − y)

= (x − y)e−(x−y), x > y

where the final equality used that
∫∞

0 we−wdw is the expected value of an
exponential random variable with mean 1. Therefore, with W being exponential
with mean 1,

E[X|Y = y] =
∫ ∞

y

x(x − y)e−(x−y) dx



3.4. Computing Expectations by Conditioning 105

=
∫ ∞

0
(w + y)we−w dw

= E[W 2] + yE[W ]
= 2 + y �

Example 3.8 The joint density of X and Y is given by

f (x, y) =
{

1
2ye−xy, 0 < x < ∞,0 < y < 2

0, otherwise

What is E[eX/2|Y = 1]?
Solution: The conditional density of X, given that Y = 1, is given by

fX|Y (x|1) = f (x,1)

fY (1)

=
1
2e−x

∫∞
0

1
2e−x dx

= e−x

Hence, by Proposition 2.1,

E[eX/2|Y = 1] =
∫ ∞

0
ex/2fX|Y (x|1) dx

=
∫ ∞

0
ex/2e−x dx

= 2 �

3.4. Computing Expectations by Conditioning

Let us denote by E[X|Y ] that function of the random variable Y whose value at
Y = y is E[X|Y = y]. Note that E[X|Y ] is itself a random variable. An extremely
important property of conditional expectation is that for all random variables X
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and Y

E[X] = E
[
E[X|Y ]] (3.3)

If Y is a discrete random variable, then Equation (3.3) states that

E[X] =
∑

y

E[X|Y = y]P {Y = y} (3.3a)

while if Y is continuous with density fY (y), then Equation (3.3) says that

E[X] =
∫ ∞

−∞
E[X|Y = y]fY (y) dy (3.3b)

We now give a proof of Equation (3.3) in the case where X and Y are both discrete
random variables.

Proof of Equation (3.3) When X and Y Are Discrete We must show
that

E[X] =
∑

y

E[X|Y = y]P {Y = y} (3.4)

Now, the right side of the preceding can be written
∑

y

E[X|Y = y]P {Y = y} =
∑

y

∑

x

xP {X = x|Y = y}P {Y = y}

=
∑

y

∑

x

x
P {X = x,Y = y}

P {Y = y} P {Y = y}

=
∑

y

∑

x

xP {X = x,Y = y}

=
∑

x

x
∑

y

P {X = x,Y = y}

=
∑

x

xP {X = x}

= E[X]
and the result is obtained. �

One way to understand Equation (3.4) is to interpret it as follows. It states that
to calculate E[X] we may take a weighted average of the conditional expected
value of X given that Y = y, each of the terms E[X|Y = y] being weighted by
the probability of the event on which it is conditioned.

The following examples will indicate the usefulness of Equation (3.3).
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Example 3.9 Sam will read either one chapter of his probability book or one
chapter of his history book. If the number of misprints in a chapter of his probabil-
ity book is Poisson distributed with mean 2 and if the number of misprints in his
history chapter is Poisson distributed with mean 5, then assuming Sam is equally
likely to choose either book, what is the expected number of misprints that Sam
will come across?

Solution: Letting X denote the number of misprints and letting

Y =
{

1, if Sam chooses his history book
2, if Sam chooses his probability book

then

E[X] = E[X|Y = 1]P {Y = 1} + E[X|Y = 2]P {Y = 2}
= 5

( 1
2

)+ 2
( 1

2

)

= 7
2 �

Example 3.10 (The Expectation of the Sum of a Random Number of Random
Variables) Suppose that the expected number of accidents per week at an industrial
plant is four. Suppose also that the numbers of workers injured in each accident
are independent random variables with a common mean of 2. Assume also that
the number of workers injured in each accident is independent of the number of
accidents that occur. What is the expected number of injuries during a week?

Solution: Letting N denote the number of accidents and Xi the number
injured in the ith accident, i = 1,2, . . . , then the total number of injuries can
be expressed as

∑N
i=1Xi . Now

E

[
N∑

1

Xi

]

= E

[

E

[
N∑

1

Xi |N
]]

But

E

[
N∑

1

Xi |N = n

]

= E

[
n∑

1

Xi |N = n

]

= E

[
n∑

1

Xi

]

by the independence of Xi and N

= nE[X]
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which yields that

E

[
N∑

i=1

Xi |N
]

= NE[X]

and thus

E

[
N∑

i=1

Xi

]

= E
[
NE[X]]= E[N ]E[X]

Therefore, in our example, the expected number of injuries during a week
equals 4 × 2 = 8. �

The random variable
∑N

i=1 Xi, equal to the sum of a random number N of
independent and identically distributed random variables that are also independent
of N , is called a compound random variable. As just shown in Example 3.10, the
expected value of a compound random variable is E[X]E[N ]. Its variance will
be derived in Example 3.17.

Example 3.11 (The Mean of a Geometric Distribution) A coin, having prob-
ability p of coming up heads, is to be successively flipped until the first head
appears. What is the expected number of flips required?

Solution: Let N be the number of flips required, and let

Y =
{

1, if the first flip results in a head
0, if the first flip results in a tail

Now

E[N ] = E[N |Y = 1]P {Y = 1} + E[N |Y = 0]P {Y = 0}
= pE[N |Y = 1] + (1 − p)E[N |Y = 0] (3.5)

However,

E[N |Y = 1] = 1, E[N |Y = 0] = 1 + E[N ] (3.6)

To see why Equation (3.6) is true, consider E[N |Y = 1]. Since Y = 1, we know
that the first flip resulted in heads and so, clearly, the expected number of flips
required is 1. On the other hand if Y = 0, then the first flip resulted in tails.
However, since the successive flips are assumed independent, it follows that,
after the first tail, the expected additional number of flips until the first head is
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just E[N ]. Hence E[N |Y = 0] = 1 + E[N ]. Substituting Equation (3.6) into
Equation (3.5) yields

E[N ] = p + (1 − p)(1 + E[N ])
or

E[N ] = 1/p �

Because the random variable N is a geometric random variable with proba-
bility mass function p(n) = p(1 − p)n−1, its expectation could easily have been
computed from E[N ] =∑∞

1 np(n) without recourse to conditional expectation.
However, if you attempt to obtain the solution to our next example without using
conditional expectation, you will quickly learn what a useful technique “condi-
tioning” can be.

Example 3.12 A miner is trapped in a mine containing three doors. The first
door leads to a tunnel that takes him to safety after two hours of travel. The second
door leads to a tunnel that returns him to the mine after three hours of travel. The
third door leads to a tunnel that returns him to his mine after five hours. Assuming
that the miner is at all times equally likely to choose any one of the doors, what is
the expected length of time until the miner reaches safety?

Solution: Let X denote the time until the miner reaches safety, and let Y

denote the door he initially chooses. Now

E[X] = E[X|Y = 1]P {Y = 1} + E[X|Y = 2]P {Y = 2}
+ E[X|Y = 3]P {Y = 3}

= 1
3

(
E[X|Y = 1] + E[X|Y = 2] + E[X|Y = 3])

However,

E[X|Y = 1] = 2,

E[X|Y = 2] = 3 + E[X],
E[X|Y = 3] = 5 + E[X], (3.7)

To understand why this is correct consider, for instance, E[X|Y = 2], and rea-
son as follows. If the miner chooses the second door, then he spends three hours
in the tunnel and then returns to the mine. But once he returns to the mine the
problem is as before, and hence his expected additional time until safety is just
E[X]. Hence E[X|Y = 2] = 3 + E[X]. The argument behind the other equali-
ties in Equation (3.7) is similar. Hence

E[X] = 1
3

(
2 + 3 + E[X] + 5 + E[X]) or E[X] = 10 �
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Example 3.13 (The Matching Rounds Problem) Suppose in Example 2.31
that those choosing their own hats depart, while the others (those without a match)
put their selected hats in the center of the room, mix them up, and then reselect.
Also, suppose that this process continues until each individual has his own hat.

(a) Find E[Rn] where Rn is the number of rounds that are necessary when n

individuals are initially present.
(b) Find E[Sn] where Sn is the total number of selections made by the n indi-
viduals, n � 2.
(c) Find the expected number of false selections made by one of the n people,
n � 2.

Solution: (a) It follows from the results of Example 2.31 that no matter how
many people remain there will, on average, be one match per round. Hence,
one might suggest that E[Rn] = n. This turns out to be true, and an induction
proof will now be given. Because it is obvious that E[R1] = 1, assume that
E[Rk] = k for k = 1, . . . , n − 1. To compute E[Rn], start by conditioning on
Xn, the number of matches that occur in the first round. This gives

E[Rn] =
n∑

i=0

E[Rn|Xn = i]P {Xn = i}

Now, given a total of i matches in the initial round, the number of rounds
needed will equal 1 plus the number of rounds that are required when n − i

persons are to be matched with their hats. Therefore,

E[Rn] =
n∑

i=0

(1 + E[Rn−i])P {Xn = i}

= 1 + E[Rn]P {Xn = 0} +
n∑

i=1

E[Rn−i]P {Xn = i}

= 1 + E[Rn]P {Xn = 0} +
n∑

i=1

(n − i)P {Xn = i}

by the induction hypothesis

= 1 + E[Rn]P {Xn = 0} + n(1 − P {Xn = 0}) − E[Xn]
= E[Rn]P {Xn = 0} + n(1 − P {Xn = 0})

where the final equality used the result, established in Example 2.31, that
E[Xn] = 1. Since the preceding equation implies that E[Rn] = n, the result
is proven.
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(b) For n � 2, conditioning on Xn, the number of matches in round 1, gives

E[Sn] =
n∑

i=0

E[Sn|Xn = i]P {Xn = i}

=
n∑

i=0

(n + E[Sn−i])P {Xn = i}

= n +
n∑

i=0

E[Sn−i]P {Xn = i}

where E[S0] = 0. To solve the preceding equation, rewrite it as

E[Sn] = n + E[Sn−Xn]

Now, if there were exactly one match in each round, then it would take a total
of 1 + 2 + · · · + n = n(n + 1)/2 selections. Thus, let us try a solution of the
form E[Sn] = an+bn2. For the preceding equation to be satisfied by a solution
of this type, for n � 2, we need

an + bn2 = n + E[a(n − Xn) + b(n − Xn)
2]

or, equivalently,

an + bn2 = n + a(n − E[Xn]) + b(n2 − 2nE[Xn] + E[X2
n])

Now, using the results of Example 2.31 and Exercise 72 of Chapter 2 that
E[Xn]=Var(Xn) = 1, the preceding will be satisfied if

an + bn2 = n + an − a + bn2 − 2nb + 2b

and this will be valid provided that b = 1/2, a = 1. That is,

E[Sn] = n + n2/2

satisfies the recursive equation for E[Sn].
The formal proof that E[Sn] = n + n2/2, n � 2, is obtained by induction

on n. It is true when n = 2 (since, in this case, the number of selections is twice
the number of rounds and the number of rounds is a geometric random variable
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with parameter p = 1/2). Now, the recursion gives that

E[Sn] = n + E[Sn]P {Xn = 0} +
n∑

i=1

E[Sn−i]P {Xn = i}

Hence, upon assuming that E[S0] = E[S1] = 0, E[Sk] = k + k2/2, for k =
2, . . . , n − 1 and using that P {Xn = n − 1} = 0, we see that

E[Sn] = n + E[Sn]P {Xn = 0} +
n∑

i=1

[n − i + (n − i)2/2]P {Xn = i}

= n + E[Sn]P {Xn = 0} + (n + n2/2)(1 − P {Xn = 0})
− (n + 1)E[Xn] + E[X2

n]/2

Substituting the identities E[Xn] = 1, E[X2
n] = 2 in the preceding shows that

E[Sn] = n + n2/2

and the induction proof is complete.
(c) If we let Cj denote the number of hats chosen by person j, j = 1, . . . , n

then

n∑

j=1

Cj = Sn

Taking expectations, and using the fact that each Cj has the same mean, yields
the result

E[Cj ] = E[Sn]/n = 1 + n/2

Hence, the expected number of false selections by person j is

E[Cj − 1] = n/2. �

Example 3.14 Independent trials, each of which is a success with probability
p, are performed until there are k consecutive successes. What is the mean number
of necessary trials?

Solution: Let Nk denote the number of necessary trials to obtain k consecu-
tive successes, and let Mk denote its mean. We will obtain a recursive equation
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for Mk by conditioning on Nk−1, the number of trials needed for k − 1 consec-
utive successes. This yields

Mk = E[Nk] = E
[
E[Nk|Nk−1]

]

Now,

E[Nk|Nk−1] = Nk−1 + 1 + (1 − p)E[Nk]
where the preceding follows since if it takes Nk−1 trials to obtain k − 1
consecutive successes, then either the next trial is a success and we have our
k in a row or it is a failure and we must begin anew. Taking expectations of
both sides of the preceding yields

Mk = Mk−1 + 1 + (1 − p)Mk

or

Mk = 1

p
+ Mk−1

p

Since N1, the time of the first success, is geometric with parameter p,
we see that

M1 = 1

p

and, recursively

M2 = 1

p
+ 1

p2
,

M3 = 1

p
+ 1

p2
+ 1

p3

and, in general,

Mk = 1

p
+ 1

p2
+ · · · + 1

pk
�

Example 3.15 (Analyzing the Quick-Sort Algorithm) Suppose we are given
a set of n distinct values—x1, . . . , xn—and we desire to put these values in in-
creasing order or, as it is commonly called, to sort them. An efficient procedure
for accomplishing this is the quick-sort algorithm which is defined recursively as
follows: When n = 2 the algorithm compares the two values and puts them in
the appropriate order. When n > 2 it starts by choosing at random one of the n

values—say, xi—and then compares each of the other n − 1 values with xi , not-
ing which are smaller and which are larger than xi . Letting Si denote the set of
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elements smaller than xi , and S̄i the set of elements greater than xi , the algorithm
now sorts the set Si and the set S̄i . The final ordering, therefore, consists of the
ordered set of the elements in Si , then xi , and then the ordered set of the elements
in S̄i . For instance, suppose that the set of elements is 10, 5, 8, 2, 1, 4, 7. We start
by choosing one of these values at random (that is, each of the 7 values has proba-
bility of 1

7 of being chosen). Suppose, for instance, that the value 4 is chosen. We
then compare 4 with each of the other six values to obtain

{2,1}, 4, {10,5,8,7}

We now sort the set {2, 1} to obtain

1,2,4, {10,5,8,7}

Next we choose a value at random from {10,5,8,7}—say 7 is chosen—and com-
pare each of the other three values with 7 to obtain

1,2,4,5,7, {10,8}

Finally, we sort {10,8} to end up with

1,2,4,5,7,8,10

One measure of the effectiveness of this algorithm is the expected number of com-
parisons that it makes. Let us denote by Mn the expected number of comparisons
needed by the quick-sort algorithm to sort a set of n distinct values. To obtain a
recursion for Mn we condition on the rank of the initial value selected to obtain:

Mn =
n∑

j=1

E[number of comparisons|value selected is jth smallest]1

n

Now if the initial value selected is the j th smallest, then the set of values smaller
than it is of size j − 1, and the set of values greater than it is of size n− j . Hence,
as n − 1 comparisons with the initial value chosen must be made, we see that

Mn =
n∑

j=1

(n − 1 + Mj−1 + Mn−j )
1

n

= n − 1 + 2

n

n−1∑

k=1

Mk (since M0 = 0)
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or, equivalently,

nMn = n(n − 1) + 2
n−1∑

k=1

Mk

To solve the preceding, note that upon replacing n by n + 1 we obtain

(n + 1)Mn+1 = (n + 1)n + 2
n∑

k=1

Mk

Hence, upon subtraction,

(n + 1)Mn+1 − nMn = 2n + 2Mn

or

(n + 1)Mn+1 = (n + 2)Mn + 2n

Therefore,

Mn+1

n + 2
= 2n

(n + 1)(n + 2)
+ Mn

n + 1

Iterating this gives

Mn+1

n + 2
= 2n

(n + 1)(n + 2)
+ 2(n − 1)

n(n + 1)
+ Mn−1

n

= · · ·

= 2
n−1∑

k=0

n − k

(n + 1 − k)(n + 2 − k)
since M1 = 0

Hence,

Mn+1 = 2(n + 2)

n−1∑

k=0

n − k

(n + 1 − k)(n + 2 − k)

= 2(n + 2)

n∑

i=1

i

(i + 1)(i + 2)
, n � 1
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Using the identity i/(i +1)(i +2) = 2/(i +2)−1/(i +1), we can approximate
Mn+1 for large n as follows:

Mn+1 = 2(n + 2)

[
n∑

i=1

2

i + 2
−

n∑

i=1

1

i + 1

]

∼ 2(n + 2)

[∫ n+2

3

2

x
dx −

∫ n+1

2

1

x
dx

]

= 2(n + 2)[2 log(n + 2) − log(n + 1) + log 2 − 2 log 3]

= 2(n + 2)

[

log(n + 2) + log
n + 2

n + 1
+ log 2 − 2 log 3

]

∼ 2(n + 2) log(n + 2) �

Although we usually employ the conditional expectation identity to more easily
enable us to compute an unconditional expectation, in our next example we show
how it can sometimes be used to obtain the conditional expectation.

Example 3.16 In the match problem of Example 2.31 involving n, n > 1,

individuals, find the conditional expected number of matches given that the first
person did not have a match.

Solution: Let X denote the number of matches, and let X1 equal 1 if the
first person has a match and let it equal 0 otherwise. Then,

E[X] = E[X|X1 = 0]P {X1 = 0} + E[X|X1 = 1]P {X1 = 1}
= E[X|X1 = 0] n − 1

n
+ E[X|X1 = 1] 1

n

But, from Example 2.31

E[X] = 1

Moreover, given that the first person has a match, the expected number of
matches is equal to 1 plus the expected number of matches when n − 1 people
select among their own n − 1 hats, showing that

E[X|X1 = 1] = 2
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Therefore, we obtain the result

E[X|X1 = 0] = n − 2

n − 1
�

3.4.1. Computing Variances by Conditioning

Conditional expectations can also be used to compute the variance of a random
variable. Specifically, we can use that

Var(X) = E[X2] − (E[X])2

and then use conditioning to obtain both E[X] and E[X2]. We illustrate this tech-
nique by determining the variance of a geometric random variable.

Example 3.17 (Variance of the Geometric Random Variable) Independent
trials, each resulting in a success with probability p, are performed in sequence.
Let N be the trial number of the first success. Find Var(N).

Solution: Let Y = 1 if the first trial results in a success, and Y = 0 other-
wise.

Var(N) = E(N2) − (E[N ])2

To calculate E[N2] and E[N ] we condition on Y . For instance,

E[N2] = E
[
E[N2|Y ]]

However,

E[N2|Y = 1] = 1,

E[N2|Y = 0] = E[(1 + N)2]

These two equations are true since if the first trial results in a success, then
clearly N = 1 and so N2 = 1. On the other hand, if the first trial results in
a failure, then the total number of trials necessary for the first success will
equal one (the first trial that results in failure) plus the necessary number of
additional trials. Since this latter quantity has the same distribution as N , we
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get that E[N2|Y = 0] = E[(1 + N)2]. Hence, we see that

E[N2] = E[N2|Y = 1]P {Y = 1} + E[N2|Y = 0]P {Y = 0}
= p + E[(1 + N)2](1 − p)

= 1 + (1 − p)E[2N + N2]

Since, as was shown in Example 3.11, E[N ] = 1/p, this yields

E[N2] = 1 + 2(1 − p)

p
+ (1 − p)E[N2]

or

E[N2] = 2 − p

p2

Therefore,

Var(N) = E[N2] − (E[N ])2

= 2 − p

p2
−
(

1

p

)2

= 1 − p

p2
�

Another way to use conditioning to obtain the variance of a random variable
is to apply the conditional variance formula. The conditional variance of X

given that Y = y is defined by

Var(X|Y = y) = E
[
(X − E[X|Y = y])2|Y = y

]

That is, the conditional variance is defined in exactly the same manner as the
ordinary variance with the exception that all probabilities are determined con-
ditional on the event that Y = y. Expanding the right side of the preceding and
taking expectation term by term yield that

Var(X|Y = y) = E[X2|Y = y] − (E[X|Y = y])2

Letting Var(X|Y) denote that function of Y whose value when Y = y is
Var(X|Y = y), we have the following result.
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Proposition 3.1 The Conditional Variance Formula

Var(X) = E
[
Var(X|Y)

]+ Var
(
E[X|Y ]) (3.8)

Proof

E
[
Var(X|Y)

]= E
[
E[X2|Y ] − (E[X|Y ])2]

= E
[
E[X2|Y ]]− E

[
(E[X|Y ])2]

= E[X2] − E
[
(E[X|Y ])2]

and

Var(E[X|Y ]) = E
[
(E[X|Y ])2]− (

E
[
E[X|Y ]])2

= E
[
(E[X|Y ])2]− (E[X])2

Therefore,

E
[
Var(X|Y)

]+ Var
(
E[X|Y ])= E[X2] − (E[X])2

which completes the proof. �

Example 3.18 (The Variance of a Compound Random Variable) Let X1,

X2, . . . be independent and identically distributed random variables with distri-
bution F having mean μ and variance σ 2, and assume that they are independent
of the nonnegative integer valued random variable N. As noted in Example 3.10,

where its expected value was determined, the random variable S = ∑N
i=1 Xi is

called a compound random variable. Find its variance.

Solution: Whereas we could obtain E[S2] by conditioning on N , let us
instead use the conditional variance formula. Now,

Var(S|N = n) = Var

(
N∑

i=1

Xi |N = n

)

= Var

(
n∑

i=1

Xi |N = n

)

= Var

(
n∑

i=1

Xi

)

= nσ 2



120 3 Conditional Probability and Conditional Expectation

By the same reasoning,

E[S|N = n] = nμ

Therefore,

Var(S|N) = Nσ 2, E[S|N ] = Nμ

and the conditional variance formula gives that

Var(S) = E[Nσ 2] + Var(Nμ) = σ 2E[N ] + μ2Var(N)

If N is a Poisson random variable, then S = ∑N
i=1 Xi is called a compound

Poisson random variable. Because the variance of a Poisson random variable
is equal to its mean, it follows that for a compound Poisson random variable
having E[N ] = λ

Var(S) = λσ 2 + λμ2 = λE[X2]
where X has the distribution F . �

3.5. Computing Probabilities by Conditioning

Not only can we obtain expectations by first conditioning on an appropriate ran-
dom variable, but we may also use this approach to compute probabilities. To see
this, let E denote an arbitrary event and define the indicator random variable X

by

X =
{

1, if E occurs

0, if E does not occur

It follows from the definition of X that

E[X] = P(E),

E[X|Y = y] = P(E|Y = y), for any random variable Y

Therefore, from Equations (3.3a) and (3.3b) we obtain

P(E) =
∑

y

P (E|Y = y)P (Y = y), if Y is discrete

=
∫ ∞

−∞
P(E|Y = y)fY (y) dy, if Y is continuous
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Example 3.19 Suppose that X and Y are independent continuous random
variables having densities fX and fY , respectively. Compute P {X < Y }.

Solution: Conditioning on the value of Y yields

P {X < Y } =
∫ ∞

−∞
P {X < Y |Y = y}fY (y) dy

=
∫ ∞

−∞
P {X < y|Y = y}fY (y) dy

=
∫ ∞

−∞
P {X < y}fY (y) dy

=
∫ ∞

−∞
FX(y)fY (y) dy

where

FX(y) =
∫ y

−∞
fX(x) dx �

Example 3.20 An insurance company supposes that the number of accidents
that each of its policyholders will have in a year is Poisson distributed, with the
mean of the Poisson depending on the policyholder. If the Poisson mean of a
randomly chosen policyholder has a gamma distribution with density function

g(λ) = λe−λ, λ � 0

what is the probability that a randomly chosen policyholder has exactly n acci-
dents next year?

Solution: Let X denote the number of accidents that a randomly chosen
policyholder has next year. Letting Y be the Poisson mean number of accidents
for this policyholder, then conditioning on Y yields

P {X = n} =
∫ ∞

0
P {X = n|Y = λ}g(λ)dλ

=
∫ ∞

0
e−λ λn

n! λe−λ dλ

= 1

n!
∫ ∞

0
λn+1e−2λ dλ
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However, because

h(λ) = 2e−2λ(2λ)n+1

(n + 1)! , λ > 0

is the density function of a gamma (n + 2,2) random variable, its integral is 1.
Therefore,

1 =
∫ ∞

0

2e−2λ(2λ)n+1

(n + 1)! dλ = 2n+2

(n + 1)!
∫ ∞

0
λn+1e−2λ dλ

showing that

P {X = n} = n + 1

2n+2
�

Example 3.21 Suppose that the number of people who visit a yoga studio
each day is a Poisson random variable with mean λ. Suppose further that each
person who visits is, independently, female with probability p or male with prob-
ability 1 − p. Find the joint probability that exactly n women and m men visit the
academy today.

Solution: Let N1 denote the number of women, and N2 the number of men,
who visit the academy today. Also, let N = N1 + N2 be the total number of
people who visit. Conditioning on N gives

P {N1 = n, N2 = m} =
∞∑

i=0

P {N1 = n, N2 = m|N = i}P {N = i}

Because P {N1 = n, N2 = m|N = i} = 0 when i �= n + m, the preceding equa-
tion yields that

P {N1 = n, N2 = m} = P {N1 = n, N2 = m|N = n + m}e−λ λn+m

(n + m)!

Given that n + m people visit it follows, because each of these n + m is in-
dependently a woman with probability p, that the conditional probability that
n of them are women (and m are men) is just the binomial probability of n
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successes in n + m trials. Therefore,

P {N1 = n, N2 = m} =
(

n + m

n

)

pn(1 − p)me−λ λn+m

(n + m)!

= (n + m)!
n!m! pn(1 − p)me−λpe−λ(1−p) λnλm

(n + m)!
= e−λp (λp)n

n! e−λ(1−p) (λ(1 − p))m

m!
Because the preceding joint probability mass function factors into two products,
one of which depends only on n and the other only on m, it follows that N1 and
N2 are independent. Moreover, because

P {N1 = n} =
∞∑

m=0

P {N1 = n, N2 = m}

= e−λp (λp)n

n!
∞∑

m=0

e−λ(1−p) (λ(1 − p))m

m! = e−λp (λp)n

n!

and, similarly,

P {N2 = m} = e−λ(1−p) (λ(1 − p))m

m!
we can conclude that N1 and N2 are independent Poisson random variables
with respective means λp and λ(1−p). Therefore, this example establishes the
important result that when each of a Poisson number of events is independently
classified either as being type 1 with probability p or type 2 with probability
1 − p, then the numbers of type 1 and type 2 events are independent Poisson
random variables. �

Example 3.22 Let X1, . . . ,Xn be independent Bernoulli random variables,
with Xi having parameter pi, i = 1, . . . , n. That is, P {Xi = 1} = pi, P {Xi =
0} = qi = 1 − pi. Suppose we want to compute the probability mass function of
their sum, X1 + · · · + Xn. To do so, we will recursively obtain the probability
mass function of X1 + · · · + Xk , first for k = 1, then k = 2, and on up to k = n.

To begin, let

Pk(j) = P {X1 + · · · + Xk = j}
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and note that

Pk(k) =
k∏

i=1

pi, Pk(0) =
k∏

i=1

qi

For 0 < j < k, conditioning on Xk yields the recursion

Pk(j) = P {X1 + · · · + Xk = j |Xk = 1}pk + P {X1 + · · · + Xk = j |Xk = 0}qk

= P {X1 + · · · + Xk−1 = j − 1|Xk = 1}pk

+ P {X1 + · · · + Xk−1 = j |Xk = 0}qk

= P {X1 + · · · + Xk−1 = j − 1}pk + P {X1 + · · · + Xk−1 = j}qk

= pk Pk−1(j − 1) + qk Pk−1(j)

Starting with P1(1) = p1, P1(0) = q1, the preceding equations can be recursively
solved to obtain the functions P2(j), P3(j), up to Pn(j). �

Example 3.23 (The Best Prize Problem) Suppose that we are to be presented
with n distinct prizes in sequence. After being presented with a prize we must
immediately decide whether to accept it or reject it and consider the next prize.
The only information we are given when deciding whether to accept a prize is
the relative rank of that prize compared to ones already seen. That is, for instance,
when the fifth prize is presented we learn how it compares with the first four prizes
already seen. Suppose that once a prize is rejected it is lost, and that our objective
is to maximize the probability of obtaining the best prize. Assuming that all n!
orderings of the prizes are equally likely, how well can we do?

Solution: Rather surprisingly, we can do quite well. To see this, fix a value
k,0 � k < n, and consider the strategy that rejects the first k prizes and then
accepts the first one that is better than all of those first k. Let Pk (best) denote
the probability that the best prize is selected when this strategy is employed.
To compute this probability, condition on X, the position of the best prize. This
gives

Pk(best) =
n∑

i=1

Pk(best|X = i)P (X = i)

= 1

n

n∑

i=1

Pk(best|X = i)

Now, if the overall best prize is among the first k, then no prize is ever selected
under the strategy considered. On the other hand, if the best prize is in posi-
tion i, where i > k, then the best prize will be selected if the best of the first



3.5. Computing Probabilities by Conditioning 125

k prizes is also the best of the first i − 1 prizes (for then none of the prizes in
positions k + 1, k + 2, . . . , i − 1 would be selected). Hence, we see that

Pk(best|X = i) = 0, if i � k

Pk(best|X = i) = P {best of first i − 1 is among the first k}
= k/(i − 1), if i > k

From the preceding, we obtain that

Pk(best) = k

n

n∑

i=k+1

1

i − 1

≈ k

n

∫ n−1

k

1

x
dx

= k

n
log

(
n − 1

k

)

≈ k

n
log

(n

k

)

Now, if we consider the function

g(x) = x

n
log

(n

x

)

then

g′(x) = 1

n
log

(n

x

)
− 1

n

and so

g′(x) = 0 ⇒ log(n/x) = 1 ⇒ x = n/e

Thus, since Pk(best) ≈ g(k), we see that the best strategy of the type considered
is to let the first n/e prizes go by and then accept the first one to appear that
is better than all of those. In addition, since g(n/e) = 1/e, the probability that
this strategy selects the best prize is approximately 1/e ≈ 0.36788.
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Remark Most students are quite surprised by the size of the probability of ob-
taining the best prize, thinking that this probability would be close to 0 when n is
large. However, even without going through the calculations, a little thought re-
veals that the probability of obtaining the best prize can be made to be reasonably
large. Consider the strategy of letting half of the prizes go by, and then selecting
the first one to appear that is better than all of those. The probability that a prize is
actually selected is the probability that the overall best is among the second half
and this is 1/2. In addition, given that a prize is selected, at the time of selection
that prize would have been the best of more than n/2 prizes to have appeared, and
would thus have probability of at least 1/2 of being the overall best. Hence, the
strategy of letting the first half of all prizes go by and then accepting the first one
that is better than all of those prizes results in a probability greater than 1/4 of
obtaining the best prize. �

Example 3.24 At a party n men take off their hats. The hats are then mixed up
and each man randomly selects one. We say that a match occurs if a man selects
his own hat. What is the probability of no matches? What is the probability of
exactly k matches?

Solution: Let E denote the event that no matches occur, and to make explicit
the dependence on n, write Pn = P(E). We start by conditioning on whether
or not the first man selects his own hat—call these events M and Mc. Then

Pn = P(E) = P(E|M)P(M) + P(E|Mc)P (Mc)

Clearly, P(E|M) = 0, and so

Pn = P(E|Mc)
n − 1

n
(3.9)

Now, P(E|Mc) is the probability of no matches when n − 1 men select from
a set of n − 1 hats that does not contain the hat of one of these men. This can
happen in either of two mutually exclusive ways. Either there are no matches
and the extra man does not select the extra hat (this being the hat of the man
that chose first), or there are no matches and the extra man does select the extra
hat. The probability of the first of these events is just Pn−1, which is seen by
regarding the extra hat as “belonging” to the extra man. Because the second
event has probability [1/(n − 1)]Pn−2, we have

P(E|Mc) = Pn−1 + 1

n − 1
Pn−2

and thus, from Equation (3.9),

Pn = n − 1

n
Pn−1 + 1

n
Pn−2



3.5. Computing Probabilities by Conditioning 127

or, equivalently,

Pn − Pn−1 = −1

n
(Pn−1 − Pn−2) (3.10)

However, because Pn is the probability of no matches when n men select among
their own hats, we have

P1 = 0, P2 = 1
2

and so, from Equation (3.10),

P3 − P2 = − (P2 − P1)

3
= − 1

3! or P3 = 1

2! − 1

3! ,

P4 − P3 = − (P3 − P2)

4
= 1

4! or P4 = 1

2! − 1

3! + 1

4!
and, in general, we see that

Pn = 1

2! − 1

3! + 1

4! − · · · + (−1)n

n!
To obtain the probability of exactly k matches, we consider any fixed group

of k men. The probability that they, and only they, select their own hats is

1

n

1

n − 1
· · · 1

n − (k − 1)
Pn−k = (n − k)!

n! Pn−k

where Pn−k is the conditional probability that the other n−k men, selecting
among their own hats, have no matches. Because there are

(
n
k

)
choices of a set

of k men, the desired probability of exactly k matches is

Pn−k

k! =
1

2! − 1

3! + · · · + (−1)n−k

(n − k)!
k!

which, for n large, is approximately equal to e−1/k!.
Remark The recursive equation, Equation (3.10), could also have been ob-
tained by using the concept of a cycle, where we say that the sequence of distinct
individuals i1, i2, . . . , ik constitutes a cycle if i1 chooses i2’s hat, i2 chooses i3’s
hat, . . . , ik−1 chooses ik’s hat, and ik chooses i1’s hat. Note that every individual
is part of a cycle, and that a cycle of size k = 1 occurs when someone chooses his
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or her own hat. With E being, as before, the event that no matches occur, it fol-
lows upon conditioning on the size of the cycle containing a specified person, say
person 1, that

Pn = P(E) =
n∑

k=1

P(E|C = k)P (C = k) (3.11)

where C is the size of the cycle that contains person 1. Now call person 1 the first
person, and note that C = k if the first person does not choose 1’s hat; the person
whose hat was chosen by the first person—call this person the second person—
does not choose 1’s hat; the person whose hat was chosen by the second person—
call this person the third person—does not choose 1’s hat; . . . , the person whose
hat was chosen by the (k − 1)st person does choose 1’s hat. Consequently,

P(C = k) = n − 1

n

n − 2

n − 1
· · · n − k + 1

n − k + 2

1

n − k + 1
= 1

n
(3.12)

That is, the size of the cycle that contains a specified person is equally likely to be
any of the values 1,2, . . . , n. Moreover, since C = 1 means that 1 chooses his or
her own hat, it follows that

P(E|C = 1) = 0 (3.13)

On the other hand, if C = k, then the set of hats chosen by the k individuals in this
cycle is exactly the set of hats of these individuals. Hence, conditional on C = k,
the problem reduces to determining the probability of no matches when n − k

people randomly choose among their own n − k hats. Therefore, for k > 1

P(E|C = k) = Pn−k

Substituting (3.12), (3.13), and (3.14) back into Equation (3.11) gives

Pn = 1

n

n∑

k=2

Pn−k (3.14)

which is easily shown to be equivalent to Equation (3.10). �

Example 3.25 (The Ballot Problem) In an election, candidate A receives n

votes, and candidate B receives m votes where n > m. Assuming that all orderings
are equally likely, show that the probability that A is always ahead in the count of
votes is (n − m)/(n + m).
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Solution: Let Pn,m denote the desired probability. By conditioning on which
candidate receives the last vote counted we have

Pn,m = P {A always ahead|A receives last vote} n

n + m

+ P {A always ahead|B receives last vote} m

n + m

Now given that A receives the last vote, we can see that the probability that A

is always ahead is the same as if A had received a total of n − 1 and B a total
of m votes. Because a similar result is true when we are given that B receives
the last vote, we see from the preceding that

Pn,m = n

n + m
Pn−1,m + m

m + n
Pn,m−1 (3.15)

We can now prove that Pn,m = (n − m)/(n + m) by induction on n + m. As it
is true when n + m = 1, that is, P1,0 = 1, assume it whenever n + m = k. Then
when n + m = k + 1, we have by Equation (3.15) and the induction hypothesis
that

Pn,m = n

n + m

n − 1 − m

n − 1 + m
+ m

m + n

n − m + 1

n + m − 1

= n − m

n + m

and the result is proven. �
The ballot problem has some interesting applications. For example, consider

successive flips of a coin that always land on “heads” with probability p, and let
us determine the probability distribution of the first time, after beginning, that the
total number of heads is equal to the total number of tails. The probability that
the first time this occurs is at time 2n can be obtained by first conditioning on the
total number of heads in the first 2n trials. This yields

P{first time equal = 2n}

= P {first time equal = 2n|n heads in first 2n}
(

2n

n

)

pn(1 − p)n

Now given a total of n heads in the first 2n flips we can see that all possible
orderings of the n heads and n tails are equally likely, and thus the preceding
conditional probability is equivalent to the probability that in an election, in which
each candidate receives n votes, one of the candidates is always ahead in the
counting until the last vote (which ties them). But by conditioning on whomever
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receives the last vote, we see that this is just the probability in the ballot problem
when m = n − 1. Hence

P {first time equal = 2n} = Pn,n−1

(
2n

n

)

pn(1 − p)n

=

(
2n

n

)

pn(1 − p)n

2n − 1

Suppose now that we wanted to determine the probability that the first time
there are i more heads than tails occurs after the (2n + i)th flip. Now, in order for
this to be the case, the following two events must occur:

(a) The first 2n + i tosses result in n + i heads and n tails; and
(b) The order in which the n+ i heads and n tails occur is such that the number
of heads is never i more than the number of tails until after the final flip.

Now, it is easy to see that event (b) will occur if and only if the order of appearance
of the n + i heads and n tails is such that starting from the final flip and working
backwards heads is always in the lead. For instance, if there are 4 heads and 2
tails (n = 2, i = 2), then the outcome _ _ _ _T H would not suffice because there
would have been 2 more heads than tails sometime before the sixth flip (since the
first 4 flips resulted in 2 more heads than tails).

Now, the probability of the event specified in (a) is just the binomial probability
of getting n + i heads and n tails in 2n + i flips of the coin.

We must now determine the conditional probability of the event specified in
(b) given that there are n + i heads and n tails in the first 2n + i flips. To do so,
note first that given that there are a total of n + i heads and n tails in the first
2n + i flips, all possible orderings of these flips are equally likely. As a result,
the conditional probability of (b) given (a) is just the probability that a random
ordering of n + i heads and n tails will, when counted in reverse order, always
have more heads than tails. Since all reverse orderings are also equally likely, it
follows from the ballot problem that this conditional probability is i/(2n + i).

That is, we have shown that

P {a} =
(

2n + i

n

)

pn+i (1 − p)n,

P {b|a} = i

2n + i

and so

P {first time heads leads by i is after flip 2n + i} =
(

2n + i

n

)

pn+i (1 − p)n
i

2n + i
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Example 3.26 Let U1,U2, . . . be a sequence of independent uniform (0,1)

random variables, and let

N = min{n � 2: Un > Un−1}
and

M = min{n � 1: U1 + · · · + Un > 1}
That is, N is the index of the first uniform random variable that is larger than
its immediate predecessor, and M is the number of uniform random variables
we need sum to exceed 1. Surprisingly, N and M have the same probability dis-
tribution, and their common mean is e!

Solution: It is easy to find the distribution of N . Since all n! possible order-
ings of U1, . . . ,Un are equally likely, we have

P {N > n} = P {U1 > U2 > · · · > Un} = 1/n!
To show that P {M > n} = 1/n!, we will use mathematical induction. However,
to give ourselves a stronger result to use as the induction hypothesis, we will
prove the stronger result that for 0 < x � 1,P {M(x) > n} = xn/n!, n � 1,
where

M(x) = min{n � 1: U1 + · · · + Un > x}
is the minimum number of uniforms that need be summed to exceed x. To prove
that P {M(x) > n} = xn/n!, note first that it is true for n = 1 since

P {M(x) > 1} = P {U1 � x} = x

So assume that for all 0 < x � 1, P {M(x) > n} = xn/n!. To determine
P {M(x) > n + 1}, condition on U1 to obtain:

P {M(x) > n + 1} =
∫ 1

0
P {M(x) > n + 1|U1 = y} dy

=
∫ x

0
P {M(x) > n + 1|U1 = y} dy

=
∫ x

0
P {M(x − y) > n} dy

=
∫ x

0

(x − y)n

n! dy by the induction hypothesis
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=
∫ x

0

un

n! du

= xn+1

(n + 1)!
where the third equality of the preceding follows from the fact that given U1 =
y, M(x) is distributed as 1 plus the number of uniforms that need be summed
to exceed x − y. Thus, the induction is complete and we have shown that for
0 < x � 1, n � 1,

P {M(x) > n} = xn/n!
Letting x = 1 shows that N and M have the same distribution. Finally, we have
that

E[M] = E[N ] =
∞∑

n=0

P {N >n} =
∞∑

n=0

1/n! = e �

Example 3.27 Let X1,X2, . . . be independent continuous random variables
with a common distribution function F and density f = F ′, and suppose that they
are to be observed one at a time in sequence. Let

N = min{n � 2: Xn = second largest of X1, . . . ,Xn}
and let

M = min{n � 2: Xn = second smallest of X1, . . . ,Xn}
Which random variable—XN , the first random variable which when observed
is the second largest of those that have been seen, or XM , the first one that on
observation is the second smallest to have been seen—tends to be larger?

Solution: To calculate the probability density function of XN , it is natural
to condition on the value of N ; so let us start by determining its probability
mass function. Now, if we let

Ai = {Xi �= second largest of X1, . . . ,Xi}, i � 2

then, for n � 2,

P {N = n} = P
(
A2A3 · · ·An−1A

c
n

)

Since the Xi are independent and identically distributed it follows that, for
any m�1, knowing the rank ordering of the variables X1, . . . ,Xm yields no
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information about the set of m values {X1, . . . ,Xm}. That is, for instance,
knowing that X1 < X2 gives us no information about the values of min(X1,X2)
or max(X1,X2). It follows from this that the events Ai, i � 2 are independent.
Also, since Xi is equally likely to be the largest, or the second largest, . . . , or
the ith largest of X1, . . . ,Xi it follows that P {Ai} = (i − 1)/i, i � 2. There-
fore, we see that

P {N = n} = 1

2

2

3

3

4
· · · n − 2

n − 1

1

n
= 1

n(n − 1)

Hence, conditioning on N yields that the probability density function of XN is
as follows:

fXN
(x) =

∞∑

n=2

1

n(n − 1)
fXN |N(x|n)

Now, since the ordering of the variables X1, . . . ,Xn is independent of the set
of values {X1, . . . ,Xn}, it follows that the event {N =n} is independent of
{X1, . . . ,Xn}. From this, it follows that the conditional distribution of XN given
that N =n is equal to the distribution of the second largest from a set of n ran-
dom variables having distribution F . Thus, using the results of Example 2.37
concerning the density function of such a random variable, we obtain that

fXN
(x) =

∞∑

n=2

1

n(n − 1)

n!
(n − 2)!1! (F (x))n−2f (x)(1 − F(x))

= f (x)(1 − F(x))

∞∑

i=0

(F (x))i

= f (x)

Thus, rather surprisingly, XN has the same distribution as X1, namely, F . Also,
if we now let Wi = −Xi, i � 1, then WM will be the value of the first Wi , which
on observation is the second largest of all those that have been seen. Hence, by
the preceding, it follows that WM has the same distribution as W1. That is,
−XM has the same distribution as −X1, and so XM also has distribution F !
In other words, whether we stop at the first random variable that is the second
largest of all those presently observed, or we stop at the first one that is the
second smallest of all those presently observed, we will end up with a random
variable having distribution F .

Whereas the preceding result is quite surprising, it is a special case of a
general result known as Ignatov’s theorem, which yields even more surprises.
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For instance, for k � 1, let

Nk = min{n � k: Xn = kth largest of X1, . . . ,Xn}
Therefore, N2 is what we previously called N , and XNk

is the first random
variable that upon observation is the kth largest of all those observed up to this
point. It can then be shown by a similar argument as used in the preceding that
XNk

has distribution function F for all k (see Exercise 82 at the end of this
chapter). In addition, it can be shown that the random variables XNk

, k � 1
are independent. (A statement and proof of Ignatov’s theorem in the case of
discrete random variables are given in Section 3.6.6.) �

The use of conditioning can also result in a more computationally efficient so-
lution than a direct calculation. This is illustrated by our next example.

Example 3.28 Consider n independent trials in which each trial results in one
of the outcomes 1, . . . , k with respective probabilities p1, . . . , pk ,

∑k
i=1 pi = 1.

Suppose further that n > k, and that we are interested in determining the proba-
bility that each outcome occurs at least once. If we let Ai denote the event that
outcome i does not occur in any of the n trials, then the desired probability is
1 − P(

⋃k
i=1 Ai), and it can be obtained by using the inclusion–exclusion theo-

rem as follows:

P

(
k⋃

i=1

Ai

)

=
k∑

i=1

P(Ai) −
∑

i

∑

j>i

P (AiAj )

+
∑

i

∑

j>i

∑

k>j

P (AiAjAk) − · · · + (−1)k+1P(A1 · · ·Ak)

where

P(Ai) = (1 − pi)
n

P (AiAj ) = (1 − pi − pj )
n, i < j

P (AiAjAk) = (1 − pi − pj − pk)
n, i < j < k

The difficulty with the preceding solution is that its computation requires the cal-
culation of 2k − 1 terms, each of which is a quantity raised to the power n. The
preceding solution is thus computationally inefficient when k is large. Let us now
see how to make use of conditioning to obtain an efficient solution.

To begin, note that if we start by conditioning on Nk (the number of times that
outcome k occurs) then when Nk > 0 the resulting conditional probability will
equal the probability that all of the outcomes 1, . . . , k − 1 occur at least once
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when n − Nk trials are performed, and each results in outcome i with probability
pi/

∑k−1
j=1pj , i = 1, . . . , k − 1. We could then use a similar conditioning step on

these terms.
To follow through on the preceding idea, let Am,r , for m � n, r � k, denote the

event that each of the outcomes 1, . . . , r occurs at least once when m independent
trials are performed, where each trial results in one of the outcomes 1, . . . , r with
respective probabilities p1/Pr, . . . ,pr/Pr , where Pr =∑r

j=1pj . Let P(m, r) =
P(Am,r ) and note that P(n, k) is the desired probability. To obtain an expression
for P(m, r), condition on the number of times that outcome r occurs. This gives

P(m, r) =
m∑

j=0

P {Am,r |r occurs j times}
(

m

j

)(
pr

Pr

)j (

1 − pr

Pr

)m−j

=
m−r+1∑

j=1

P(m − j, r − 1)

(
m

j

)(
pr

Pr

)j (

1 − pr

Pr

)m−j

Starting with

P(m,1) = 1, if m � 1
P(m,1) = 0, if m = 0

we can use the preceding recursion to obtain the quantities P(m,2), m =
2, . . . , n − (k − 2), and then the quantities P(m,3), m = 3, . . . , n − (k − 3), and
so on, up to P(m,k − 1), m = k − 1, . . . , n − 1. At this point we can then use
the recursion to compute P(n, k). It is not difficult to check that the amount of
computation needed is a polynomial function of k, which will be much smaller
than 2k when k is large. �

As noted previously, conditional expectations given that Y = y are exactly the
same as ordinary expectations except that all probabilities are computed condi-
tional on the event that Y = y. As such, conditional expectations satisfy all the
properties of ordinary expectations. For instance, the analog of

E[X] =

⎧
⎪⎪⎨

⎪⎪⎩

∑

w

E[X|W = w]P {W = w}, if W is discrete

∫

w

E[X|W = w]fW(w)dw, if W is continuous

is that

E[X|Y = y]

=

⎧
⎪⎪⎨

⎪⎪⎩

∑

w

E[X|W = w,Y = y]P {W = w|Y = y}, if W is discrete

∫

w

E[X|W = w,Y = y]fW |Y (w|y)dw, if W is continuous
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If E[X|Y,W ] is defined to be that function of Y and W that, when Y = y and
W = w, is equal to E[X|Y = y,W = w], then the preceding can be written as

E[X|Y ] = E
[
E[X|Y,W ]∣∣Y ]

Example 3.29 An automobile insurance company classifies each of its pol-
icyholders as being of one of the types i = 1, . . . , k. It supposes that the num-
bers of accidents that a type i policyholder has in successive years are indepen-
dent Poisson random variables with mean λi, i = 1, . . . , k. The probability that
a newly insured policyholder is type i is pi,

∑k
i=1 pi = 1. Given that a policy-

holder had n accidents in her first year, what is the expected number that she has
in her second year? What is the conditional probability that she has m accidents
in her second year?

Solution: Let Ni denote the number of accidents the policyholder has in
year i, i = 1,2. To obtain E[N2|N1 = n], condition on her risk type T .

E[N2|N1 = n] =
k∑

j=1

E[N2|T = j,N1 = n]P {T = j |N1 = n}

=
k∑

j=1

E[N2|T = j ]P {T = j |N1 = n}

=
k∑

j=1

λjP {T = j |N1 = n}

=
∑k

j=1 e−λj λn+1
j pj

∑k
j=1 e−λj λn

jpj

where the final equality used that

P {T = j |N1 = n} = P {T = j,N1 = n}
P {N1 = n}

= P {N1 = n|T = j}P {T = j}
∑k

j=1 P {N1 = n|T = j}P {T = j}

= pje
−λj λn

j /n!
∑k

j=1 pje
−λj λn

j /n!
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The conditional probability that the policyholder has m accidents in year 2
given that she had n in year 1 can also be obtained by conditioning on her type.

P {N2 = m|N1 = n} =
k∑

j=1

P {N2 = m|T = j,N1 = n}P {T = j |N1 = n}

=
k∑

j=1

e−λj
λm

j

m! P {T = j |N1 = n}

=
∑k

j=1 e−2λj λm+n
j pj

m!∑k
j=1 e−λj λn

jpj

Another way to calculate P {N2 = m|N1 = n} is first to write

P {N2 = m|N1 = n} = P {N2 = m,N1 = n}
P {N1 = n}

and then determine both the numerator and denominator by conditioning on T .
This yields

P {N2 = m|N1 = n} =
∑k

j=1 P {N2 = m,N1 = n|T = j}pj
∑k

j=1 P {N1 = n|T = j}pj

=
∑k

j=1 e−λj
λm

j

m! e−λj
λn

j

n! pj

∑k
j=1 e−λj

λn
j

n! pj

=
∑k

j=1 e−2λj λm+n
j pj

m!∑k
j=1 e−λj λn

jpj

�

3.6. Some Applications

3.6.1. A List Model

Consider n elements—e1, e2, . . . , en—that are initially arranged in some ordered
list. At each unit of time a request is made for one of these elements—ei being
requested, independently of the past, with probability Pi . After being requested
the element is then moved to the front of the list. That is, for instance, if the
present ordering is e1, e2, e3, e4 and if e3 is requested, then the next ordering is
e3, e1, e2, e4.
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We are interested in determining the expected position of the element requested
after this process has been in operation for a long time. However, before comput-
ing this expectation, let us note two possible applications of this model. In the
first we have a stack of reference books. At each unit of time a book is randomly
selected and is then returned to the top of the stack. In the second application we
have a computer receiving requests for elements stored in its memory. The request
probabilities for the elements may not be known, so to reduce the average time it
takes the computer to locate the element requested (which is proportional to the
position of the requested element if the computer locates the element by starting
at the beginning and then going down the list), the computer is programmed to
replace the requested element at the beginning of the list.

To compute the expected position of the element requested, we start by condi-
tioning on which element is selected. This yields

E [position of element requested ]

=
n∑

i=1

E [position|ei is selected ]Pi

=
n∑

i=1

E [position of ei |ei is selected ]Pi

=
n∑

i=1

E [position of ei ]Pi (3.16)

where the final equality used that the position of ei and the event that ei is selected
are independent because, regardless of its position, ei is selected with probabil-
ity Pi .

Now

position of ei = 1 +
∑

j �=i

Ij

where

Ij =
{

1, if ej precedes ei

0, otherwise

and so,

E [position of ei ] = 1 +
∑

j �=i

E [Ij ]

= 1 +
∑

j �=i

P {ej precedes ei} (3.17)
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To compute P {ej precedes ei}, note that ej will precede ei if the most recent
request for either of them was for ej . But given that a request is for either ei or
ej , the probability that it is for ej is

P {ej |ei or ej } = Pj

Pi + Pj

and, thus,

P {ej precedes ei} = Pj

Pi + Pj

Hence from Equations (3.16) and (3.17) we see that

E{position of element requested} = 1 +
n∑

i=1

Pi

∑

j �=i

Pj

Pi + Pj

This list model will be further analyzed in Section 4.8, where we will assume a
different reordering rule—namely, that the element requested is moved one closer
to the front of the list as opposed to being moved to the front of the list as assumed
here. We will show there that the average position of the requested element is less
under the one-closer rule than it is under the front-of-the-line rule.

3.6.2. A Random Graph

A graph consists of a set V of elements called nodes and a set A of pairs of
elements of V called arcs. A graph can be represented graphically by drawing
circles for nodes and drawing lines between nodes i and j whenever (i, j) is an
arc. For instance if V = {1,2,3,4} and A = {(1,2), (1,4), (2,3), (1,2), (3,3)},
then we can represent this graph as shown in Figure 3.1. Note that the arcs have
no direction (a graph in which the arcs are ordered pairs of nodes is called a
directed graph); and that in the figure there are multiple arcs connecting nodes 1
and 2, and a self-arc (called a self-loop) from node 3 to itself.

Figure 3.1. A graph.
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Figure 3.2. A disconnected graph.

Figure 3.3.

We say that there exists a path from node i to node j , i �= j , if there exists a
sequence of nodes i, i1, . . . , ik, j such that (i, i1), (i1, i2), . . . , (ik, j) are all arcs.
If there is a path between each of the

(
n
2

)
distinct pair of nodes we say that the

graph is connected. The graph in Figure 3.1 is connected but the graph in Fig-
ure 3.2 is not. Consider now the following graph where V = {1,2, . . . , n} and
A = {(i,X(i)), i = 1, . . . , n} where the X(i) are independent random variables
such that

P {X(i) = j} = 1

n
, j = 1,2, . . . , n

In other words from each node i we select at random one of the n nodes (including
possibly the node i itself) and then join node i and the selected node with an arc.
Such a graph is commonly referred to as a random graph.

We are interested in determining the probability that the random graph so ob-
tained is connected. As a prelude, starting at some node—say, node 1—let us
follow the sequence of nodes, 1, X(1), X2(1), . . . , where Xn(1) = X(Xn−1(1));
and define N to equal the first k such that Xk(1) is not a new node. In other words,

N = 1st k such that Xk(1) ∈ {1,X(1), . . . ,Xk−1(1)}

We can represent this as shown in Figure 3.3 where the arc from XN−1(1) goes
back to a node previously visited.

To obtain the probability that the graph is connected we first condition on N to
obtain

P {graph is connected} =
n∑

k=1

P {connected|N = k}P {N = k} (3.18)
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Now given that N = k, the k nodes 1,X(1), . . . ,Xk−1(1) are connected to each
other, and there are no other arcs emanating out of these nodes. In other words,
if we regard these k nodes as being one supernode, the situation is the same as
if we had one supernode and n − k ordinary nodes with arcs emanating from
the ordinary nodes—each arc going into the supernode with probability k/n. The
solution in this situation is obtained from Lemma 3.2 by taking r = n − k.

Lemma 3.1 Given a random graph consisting of nodes 0,1, . . . , r and r

arcs—namely, (i, Yi), i = 1, . . . , r , where

Yi =

⎧
⎪⎪⎨

⎪⎪⎩

j with probability
1

r + k
, j = 1, . . . , r

0 with probability
k

r + k

then

P {graph is connected} = k

r + k

[In other words, for the preceding graph there are r + 1 nodes—r ordinary
nodes and one supernode. Out of each ordinary node an arc is chosen. The arc
goes to the supernode with probability k/(r + k) and to each of the ordinary ones
with probability 1/(r + k). There is no arc emanating out of the supernode.]

Proof The proof is by induction on r . As it is true when r = 1 for any k, assume
it true for all values less than r . Now in the case under consideration, let us first
condition on the number of arcs (j, Yj ) for which Yj = 0. This yields

P {connected}

=
r∑

i=0

P {connected|i of the Yj = 0}
(

r

i

)(
k

r + k

)i (
r

r + k

)r−i

(3.19)

Now given that exactly i of the arcs are into the supernode (see Figure 3.4), the
situation for the remaining r − i arcs which do not go into the supernode is the
same as if we had r − i ordinary nodes and one supernode with an arc going
out of each of the ordinary nodes—into the supernode with probability i/r and
into each ordinary node with probability 1/r . But by the induction hypothesis the
probability that this would lead to a connected graph is i/r .

Hence,

P {connected|i of the Yj = 0} = i

r
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Figure 3.4. The situation given that i of the r arcs are into the supernode.

and from Equation (3.19)

P {connected} =
r∑

i=0

i

r

(
r

i

)(
k

r + k

)i (
r

r + k

)r−i

= 1

r
E

[

binomial

(

r,
k

r + k

)]

= k

r + k

which completes the proof of the lemma. �

Hence as the situation given N =k is exactly as described by Lemma 3.2 when
r = n − k, we see that, for the original graph,

P {graph is connected|N = k} = k

n

and, from Equation (3.18),

P {graph is connected} = E(N)

n
(3.20)

To compute E(N) we use the identity

E(N) =
∞∑

i=1

P {N � i}

which can be proved by defining indicator variables Ii , i � 1, by

Ii =
{

1, if i � N

0, if i > N
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Hence,

N =
∞∑

i=1

Ii

and so

E(N) = E

[ ∞∑

i=1

Ii

]

=
∞∑

i=1

E[Ii]

=
∞∑

i=1

P {N � i} (3.21)

Now the event {N � i} occurs if the nodes 1,X(1), . . . ,Xi−1(1) are all distinct.
Hence,

P {N � i} = (n − 1)

n

(n − 2)

n
· · · (n − i + 1)

n

= (n − 1)!
(n − i)!ni−1

and so, from Equations (3.20) and (3.21),

P {graph is connected} = (n − 1)!
n∑

i=1

1

(n − i)!ni

= (n − 1)!
nn

n−1∑

j=0

nj

j ! (by j = n − i) (3.22)

We can also use Equation (3.22) to obtain a simple approximate expression for
the probability that the graph is connected when n is large. To do so, we first note
that if X is a Poisson random variable with mean n, then

P {X < n} = e−n

n−1∑

j=0

nj

j !

Since a Poisson random variable with mean n can be regarded as being the sum
of n independent Poisson random variables each with mean 1, it follows from the
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central limit theorem that for n large such a random variable has approximately
a normal distribution and as such has probability 1

2 of being less than its mean.
That is, for n large

P {X < n} ≈ 1
2

and so for n large,

n−1∑

j=0

nj

j ! ≈ en

2

Hence from Equation (3.22), for n large,

P {graph is connected} ≈ en(n − 1)!
2nn

By employing an approximation due to Stirling which states that for n large

n! ≈ nn+1/2e−n
√

2π

We see that, for n large,

P {graph is connected} ≈
√

π

2(n − 1)
e

(
n − 1

n

)n

and as

lim
n→∞

(
n − 1

n

)n

= lim
n→∞

(

1 − 1

n

)n

= e−1

We see that, for n large,

P {graph is connected} ≈
√

π

2(n − 1)

Now a graph is said to consist of r connected components if its nodes can be
partitioned into r subsets so that each of the subsets is connected and there are
no arcs between nodes in different subsets. For instance, the graph in Figure 3.5
consists of three connected components—namely, {1, 2, 3}, {4, 5}, and {6}. Let
C denote the number of connected components of our random graph and let

Pn(i) = P {C = i}
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Figure 3.5. A graph having three connected components.

where we use the notation Pn(i) to make explicit the dependence on n, the number
of nodes. Since a connected graph is by definition a graph consisting of exactly
one component, from Equation (3.22) we have

Pn(1) = P {C = 1}

= (n − 1)!
nn

n−1∑

j=0

nj

j ! (3.23)

To obtain Pn(2), the probability of exactly two components, let us first fix at-
tention on some particular node—say, node 1. In order that a given set of k − 1
other nodes—say, nodes 2, . . . , k—will along with node 1 constitute one con-
nected component, and the remaining n − k a second connected component, we
must have

(i) X(i) ∈ {1,2, . . . , k}, for all i = 1, . . . , k.
(ii) X(i) ∈ {k + 1, . . . , n}, for all i = k + 1, . . . , n.

(iii) The nodes 1,2, . . . , k form a connected subgraph.
(iv) The nodes k + 1, . . . , n form a connected subgraph.

The probability of the preceding occurring is clearly

(
k

n

)k (
n − k

n

)n−k

Pk(1)Pn−k(1)

and because there are
(
n−1
k−1

)
ways of choosing a set of k − 1 nodes from the nodes

2 through n, we have

Pn(2) =
n−1∑

k=1

(
n − 1

k − 1

)(
k

n

)k (
n − k

n

)n−k

Pk(1)Pn−k(1)
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Figure 3.6. A cycle.

and so Pn(2) can be computed from Equation (3.23). In general, the recursive
formula for Pn(i) is given by

Pn(i) =
n−i+1∑

k=1

(
n − 1

k − 1

)(
k

n

)k (
n − k

n

)n−k

Pk(1)Pn−k(i − 1)

To compute E[C], the expected number of connected components, first note
that every connected component of our random graph must contain exactly one
cycle [a cycle is a set of arcs of the form (i, i1), (i1, i2), . . . , (ik−1 , ik), (ik, i) for
distinct nodes i, i1, . . . , ik]. For example, Figure 3.6 depicts a cycle.

The fact that every connected component of our random graph must contain
exactly one cycle is most easily proved by noting that if the connected component
consists of r nodes, then it must also have r arcs and, hence, must contain exactly
one cycle (why?). Thus, we see that

E[C] = E[number of cycles]

= E

[∑

S

I (S)

]

=
∑

S

E[I (S)]

where the sum is over all subsets S ⊂ {1,2, . . . , n} and

I (S) =
{

1, if the nodes in S are all the nodes of a cycle

0, otherwise

Now, if S consists of k nodes, say 1, . . . , k, then

E[I (S)] = P {1,X(1), . . . ,Xk−1(1) are all distinct and contained in

1, . . . , k and Xk(1) = 1}

= k − 1

n

k − 2

n
· · · 1

n

1

n
= (k − 1)!

nk
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Hence, because there are
(
n
k

)
subsets of size k we see that

E[C] =
n∑

k=1

(
n

k

)
(k − 1)!

nk

3.6.3. Uniform Priors, Polya’s Urn Model, and
Bose–Einstein Statistics

Suppose that n independent trials, each of which is a success with probability p,
are performed. If we let X denote the total number of successes, then X is a
binomial random variable such that

P {X = k|p} =
(

n

k

)

pk(1 − p)n−k, k = 0,1, . . . , n

However, let us now suppose that whereas the trials all have the same success
probability p, its value is not predetermined but is chosen according to a uniform
distribution on (0, 1). (For instance, a coin may be chosen at random from a huge
bin of coins representing a uniform spread over all possible values of p, the coin’s
probability of coming up heads. The chosen coin is then flipped n times.) In this
case, by conditioning on the actual value of p, we have that

P {X = k} =
∫ 1

0
P {X = k|p}f (p)dp

=
∫ 1

0

(
n

k

)

pk(1 − p)n−k dp

Now, it can be shown that

∫ 1

0
pk(1 − p)n−k dp = k!(n − k)!

(n + 1)! (3.24)

and thus

P {X = k} =
(

n

k

)
k!(n − k)!
(n + 1)!

= 1

n + 1
, k = 0,1, . . . , n (3.25)

In other words, each of the n + 1 possible values of X is equally likely.
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As an alternate way of describing the preceding experiment, let us compute the
conditional probability that the (r + 1)st trial will result in a success given a total
of k successes (and r − k failures) in the first r trials.

P {(r + 1)st trial is a success|k successes in first r}

= P {(r + 1)st is a success, k successes in first r trials}
P {k successes in first r trials}

=
∫ 1

0 P {(r + 1)st is a success, k in first r|p} dp

1/(r + 1)

= (r + 1)

∫ 1

0

(
r

k

)

pk+1(1 − p)r−k dp

= (r + 1)

(
r

k

)
(k + 1)!(r − k)!

(r + 2)! by Equation (3.24)

= k + 1

r + 2
(3.26)

That is, if the first r trials result in k successes, then the next trial will be a success
with probability (k + 1)/(r + 2).

It follows from Equation (3.26) that an alternative description of the stochastic
process of the successive outcomes of the trials can be described as follows: There
is an urn which initially contains one white and one black ball. At each stage a ball
is randomly drawn and is then replaced along with another ball of the same color.
Thus, for instance, if of the first r balls drawn, k were white, then the urn at the
time of the (r + 1)th draw would consist of k + 1 white and r − k + 1 black, and
thus the next ball would be white with probability (k + 1)/(r + 2). If we identify
the drawing of a white ball with a successful trial, then we see that this yields an
alternate description of the original model. This latter urn model is called Polya’s
urn model.

Remarks (i) In the special case when k = r , Equation (3.26) is sometimes
called Laplace’s rule of succession, after the French mathematician Pierre de
Laplace. In Laplace’s era, this “rule” provoked much controversy, for people at-
tempted to employ it in diverse situations where its validity was questionable. For
instance, it was used to justify such propositions as “If you have dined twice at a
restaurant and both meals were good, then the next meal also will be good with
probability 3

4 ,” and “Since the sun has risen the past 1,826,213 days, so will it rise
tomorrow with probability 1,826,214/1,826,215.” The trouble with such claims
resides in the fact that it is not at all clear the situation they are describing can
be modeled as consisting of independent trials having a common probability of
success which is itself uniformly chosen.
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(ii) In the original description of the experiment, we referred to the successive
trials as being independent, and in fact they are independent when the success
probability is known. However, when p is regarded as a random variable, the
successive outcomes are no longer independent because knowing whether an out-
come is a success or not gives us some information about p, which in turn yields
information about the other outcomes.

The preceding can be generalized to situations in which each trial has more
than two possible outcomes. Suppose that n independent trials, each resulting in
one of m possible outcomes 1, . . . ,m, with respective probabilities p1, . . . , pm

are performed. If we let Xi denote the number of type i outcomes that result in
the n trials, i = 1, . . . ,m, then the vector X1, . . . ,Xm will have the multinomial
distribution given by

P {X1 = x1,X2 = x2, . . . ,Xm = xm|p} = n!
x1! · · ·xm! p

x1
1 p

x2
2 · · ·pxm

m

where x1, . . . , xm is any vector of nonnegative integers that sum to n. Now let us
suppose that the vector p = (p1, . . . , pm) is not specified, but instead is chosen by
a “uniform” distribution. Such a distribution would be of the form

f (p1, . . . , pm) =
{
c, 0 � pi � 1, i = 1, . . . ,m,

∑m
1 pi = 1

0, otherwise

The preceding multivariate distribution is a special case of what is known as the
Dirichlet distribution, and it is not difficult to show, using the fact that the distri-
bution must integrate to 1, that c = (m − 1)!.

The unconditional distribution of the vector X is given by

P {X1 =x1, . . . ,Xm =xm}=
∫∫

· · ·
∫

P {X1 = x1, . . . ,Xm = xm|p1, . . . , pm}

× f (p1, . . . , pm) dp1 · · ·dpm = (m − 1)!n!
x1! · · ·xm!

∫∫

· · ·
∫

0�pi�1
∑m

1 pi=1

p
x1
1 · · ·pxm

m dp1 · · ·dpm

Now it can be shown that

∫∫

· · ·
∫

0�pi�1
∑m

1 pi=1

p
x1
1 · · ·pxm

m dp1 · · ·dpm = x1! · · ·xm!
(∑m

1 xi + m − 1
)! (3.27)
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and thus, using the fact that
∑m

1 xi = n, we see that

P {X1 = x1, . . . ,Xm = xm} = n!(m − 1)!
(n + m − 1)!

=
(

n + m − 1

m − 1

)−1

(3.28)

Hence, all of the
(
n+m−1

m−1

)
possible outcomes [there are

(
n+m−1

m−1

)
possible non-

negative integer valued solutions of x1 +· · ·+xm = n] of the vector (X1, . . . ,Xm)

are equally likely. The probability distribution given by Equation (3.28) is some-
times called the Bose–Einstein distribution.

To obtain an alternative description of the foregoing, let us compute the condi-
tional probability that the (n + 1)st outcome is of type j if the first n trials have
resulted in xi type i outcomes, i = 1, . . . ,m,

∑m
1 xi = n. This is given by

P {(n + 1)st is j |xi type i in first n, i = 1, . . . ,m}

= P {(n + 1)st is j, xi type i in first n, i = 1, . . . ,m}
P {xi type i in first n, i = 1, . . . ,m}

=
n!(m − 1)!
x1! · · ·xm!

∫∫

· · ·
∫

p
x1
1 · · ·pxj +1

j · · ·pxm
m dp1 · · ·dpm

(
n+m−1

m−1

)−1

where the numerator is obtained by conditioning on the p vector and the denom-
inator is obtained by using Equation (3.28). By Equation (3.27), we have that

P {(n + 1)st is j |xi type i in first n, i = 1, . . . ,m}

=
(xj + 1)n!(m − 1)!

(n + m)!
(m − 1)!n!

(n + m − 1)!
= xj + 1

n + m
(3.29)

Using Equation (3.29), we can now present an urn model description of the
stochastic process of successive outcomes. Namely, consider an urn that initially
contains one of each of m types of balls. Balls are then randomly drawn and are
replaced along with another of the same type. Hence, if in the first n drawings
there have been a total of xj type j balls drawn, then the urn immediately before
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the (n+1)st draw will contain xj +1 type j balls out of a total of m+n, and so the
probability of a type j on the (n + 1)st draw will be given by Equation (3.29).

Remark Consider a situation where n particles are to be distributed at random
among m possible regions; and suppose that the regions appear, at least before the
experiment, to have the same physical characteristics. It would thus seem that the
most likely distribution for the number of particles that fall into each of the regions
is the multinomial distribution with pi ≡ 1/m. (This, of course, would correspond
to each particle, independent of the others, being equally likely to fall in any of
the m regions.) Physicists studying how particles distribute themselves observed
the behavior of such particles as photons and atoms containing an even number
of elementary particles. However, when they studied the resulting data, they were
amazed to discover that the observed frequencies did not follow the multinomial
distribution but rather seemed to follow the Bose–Einstein distribution. They were
amazed because they could not imagine a physical model for the distribution of
particles which would result in all possible outcomes being equally likely. (For
instance, if 10 particles are to distribute themselves between two regions, it hardly
seems reasonable that it is just as likely that both regions will contain 5 particles
as it is that all 10 will fall in region 1 or that all 10 will fall in region 2.)

However, from the results of this section we now have a better understanding
of the cause of the physicists’ dilemma. In fact, two possible hypotheses present
themselves. First, it may be that the data gathered by the physicists were actually
obtained under a variety of different situations, each having its own characteristic
p vector which gave rise to a uniform spread over all possible p vectors. A second
possibility (suggested by the urn model interpretation) is that the particles select
their regions sequentially and a given particle’s probability of falling in a region is
roughly proportional to the fraction of the landed particles that are in that region.
(In other words, the particles presently in a region provide an “attractive” force on
elements that have not yet landed.)

3.6.4. Mean Time for Patterns

Let X = (X1,X2, . . .) be a sequence of independent and identically distributed
discrete random variables such that

pi = P {Xj = i}
For a given subsequence, or pattern, i1, . . . , in let T = T (i1, . . . , in) denote the
number of random variables that we need to observe until the pattern appears.
For instance, if the subsequence of interest is 3,5,1 and the sequence is X =
(5,3,1,3,5,3,5,1,6,2, . . .) then T = 8. We want to determine E[T ].

To begin, let us consider whether the pattern has an overlap, where we say that
the pattern i1, i2, . . . , in has an overlap if for some k,1 � k < n, the sequence of
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its final k elements is the same as that of its first k elements. That is, it has an
overlap if for some 1 � k < n,

(in−k+1, . . . , in) = (i1, . . . , ik), k < n

For instance, the pattern 3,5,1 has no overlaps, whereas the pattern 3,3,3 does.

Case 1: The pattern has no overlaps.
In this case we will argue that T will equal j + n if and only if the pattern does
not occur within the first j values, and the next n values are i1, . . . , in. That is,

T = j + n ⇔ {T > j, (Xj+1, . . . ,Xj+n) = (i1, . . . , in)} (3.30)

To verify (3.30), note first that T = j + n clearly implies both that T > j and that
(Xj+1, . . . ,Xj+n) = (i1, . . . , in). On the other hand, suppose that

T > j and (Xj+1, . . . ,Xj+n) = (i1, . . . , in) (3.31)

Let k < n. Because (i1, . . . , ik) �= (in−k+1, . . . , in), it follows that T �= j + k. But
(3.31) implies that T � j + n, so we can conclude that T = j + n. Thus we have
verified (3.30).

Using (3.30), we see that

P {T = j + n} = P {T > j, (Xj+1, . . . ,Xj+n) = (i1, . . . , in)}
However, whether T > j is determined by the values X1, . . . ,Xj , and is thus
independent of Xj+1, . . . ,Xj+n. Consequently,

P {T = j + n} = P {T > j}P {(Xj+1, . . . ,Xj+n) = (i1, . . . , in)}
= P {T > j}p

where

p = pi1pi2 · · ·pin

Summing both sides of the preceding over all j yields

1 =
∞∑

j=0

P {T = j + n} = p

∞∑

j=0

P {T > j} = pE[T ]

or

E[T ] = 1

p

Case 2: The pattern has overlaps.
For patterns having overlaps there is a simple trick that will enable us to obtain
E[T ] by making use of the result for nonoverlapping patterns. To make the analy-
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sis more transparent, consider a specific pattern, say P = (3,5,1,3,5). Let x be
a value that does not appear in the pattern, and let Tx denote the time until the
pattern Px = (3,5,1,3,5, x) appears. That is, Tx is the time of occurrence of the
new pattern that puts x at the end of the original pattern. Because x did not appear
in the original pattern it follows that the new pattern has no overlaps; thus,

E[Tx] = 1

pxp

where p =∏n
j=1 pij = p2

3p
2
5p1. Because the new pattern can occur only after the

original one, write

Tx = T + A

where T is the time at which the pattern P = (3,5,1,3,5) occurs, and A is the
additional time after the occurrence of the pattern P until Px occurs. Also, let
E[Tx |i1, . . . ir ] denote the expected additional time after time r until the pattern
Px appears given that the first r data values are i1, . . . , ir . Conditioning on X, the
next data value after the occurrence of the pattern (3,5,1,3,5), gives that

E[A|X = i] =

⎧
⎪⎪⎨

⎪⎪⎩

1 + E[Tx |3,5,1], if i = 1
1 + E[Tx |3], if i = 3
1, if i = x

1 + E[Tx], if i �= 1,3, x

Therefore,

E[Tx] = E[T ] + E[A]
= E[T ] + 1 + E[Tx |3,5,1]p1 + E[Tx |3]p3 + E[Tx](1 − p1 − p3 − px)

(3.32)

But

E[Tx] = E[T (3,5,1)] + E[Tx |3,5,1]
giving that

E[Tx |3,5,1] = E[Tx] − E[T (3,5,1)]
Similarly,

E[Tx |3] = E[Tx] − E[T (3)]
Substituting back into Equation (3.32) gives

pxE[Tx] = E[T ] + 1 − p1E[T (3,5,1)] − p3E[T (3)]
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But, by the result in the nonoverlapping case,

E[T (3,5,1)] = 1

p3p5p1
, E[T (3)] = 1

p3

yielding the result

E[T ] = pxE[Tx] + 1

p3p5
= 1

p
+ 1

p3p5

For another illustration of the technique, let us reconsider Example 3.14, which
is concerned with finding the expected time until n consecutive successes oc-
cur in independent Bernoulli trials. That is, we want E[T ], when the pattern
is P = (1,1, . . . ,1). Then, with x �= 1 we consider the nonoverlapping pattern
Px = (1, . . . ,1, x), and let Tx be its occurrence time. With A and X as previously
defined, we have that

E[A|X = i] =
⎧
⎨

⎩

1 + E[A], if i = 1
1, if i = x

1 + E[Tx], if i �= 1, x

Therefore,

E[A] = 1 + E[A]p1 + E[Tx](1 − p1 − px)

or

E[A] = 1

1 − p1
+ E[Tx]1 − p1 − px

1 − p1

Consequently,

E[T ] = E[Tx] − E[A]

= pxE[Tx] − 1

1 − p1

= (1/p1)
n − 1

1 − p1

where the final equality used that E[Tx] = 1
pn

1 px
.

The mean occurrence time of any overlapping pattern P = (i1, . . . , in) can be
obtained by the preceding method. Namely, let Tx be the time until the nonover-
lapping pattern Px = (i1, . . . , in, x) occurs; then use the identity

E[Tx] = E[T ] + E[A]
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to relate E[T ] and E[Tx] = 1
p px

; then condition on the next data value after P
occurs to obtain an expression for E[A] in terms of quantities of the form

E[Tx |i1, . . . , ir ] = E[Tx] − E[T (i1, . . . , ir )]

If (i1, . . . , ir ) is nonoverlapping, use the nonoverlapping result to obtain
E[T (i1, . . . , ir )]; otherwise, repeat the process on the subpattern (i1, . . . , ir ).

Remark We can utilize the preceding technique even when the pattern
i1, . . . , in includes all the distinct data values. For instance, in coin tossing the pat-
tern of interest might be h, t, h. Even in such cases, we should let x be a data value
that is not in the pattern and use the preceding technique (even though px = 0).
Because px will appear only in the final answer in the expression pxE[Tx] = px

pxp
,

by interpreting this fraction as 1/p we obtain the correct answer. (A rigorous ap-
proach, yielding the same result, would be to reduce one of the positive pi by ε,
take px = ε, solve for E[T ], and then let ε go to 0.) �

3.6.5. The k-Record Values of Discrete Random Variables

Let X1,X2, . . . be independent and identically distributed random variables
whose set of possible values is the positive integers, and let P {X = j}, j � 1,
denote their common probability mass function. Suppose that these random vari-
ables are observed in sequence, and say that Xn is a k-record value if

Xi � Xn for exactly k of the values i, i = 1, . . . , n

That is, the nth value in the sequence is a k-record value if exactly k of the first n

values (including Xn) are at least as large as it. Let Rk denote the ordered set of
k-record values.

It is a rather surprising result that not only do the sequences of k-record values
have the same probability distributions for all k, these sequences are also inde-
pendent of each other. This result is known as Ignatov’s theorem.

Ignatov’s Theorem Rk, k � 1, are independent and identically distributed
random vectors.

Proof Define a series of subsequences of the data sequence X1,X2, . . . by let-
ting the ith subsequence consist of all data values that are at least as large as
i, i � 1. For instance, if the data sequence is

2,5,1,6,9,8,3,4,1,5,7,8,2,1,3,4,2,5,6,1, . . .
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then the subsequences are as follows:

� 1 : 2,5,1,6,9,8,3,4,1,5,7,8,2,1,3,4,2,5,6,1, . . .

� 2 : 2,5,6,9,8,3,4,5,7,8,2,3,4,2,5,6, . . .

� 3 : 5,6,9,8,3,4,5,7,8,3,4,5,6, . . .

and so on.
Let Xi

j be the j th element of subsequence i. That is, Xi
j is the j th data value

that is at least as large as i. An important observation is that i is a k-record value
if and only if Xi

k = i. That is, i will be a k-record value if and only if the kth
value to be at least as large as i is equal to i. (For instance, for the preceding data,
since the fifth value to be at least as large as 3 is equal to 3 it follows that 3 is a
five-record value.) Now, it is not difficult to see that, independent of which values
in the first subsequence are equal to 1, the values in the second subsequence are
independent and identically distributed according to the mass function

P {value in second subsequence = j} = P {X = j |X � 2}, j � 2

Similarly, independent of which values in the first subsequence are equal to 1 and
which values in the second subsequence are equal to 2, the values in the third
subsequence are independent and identically distributed according to the mass
function

P {value in third subsequence = j} = P {X = j |X � 3}, j � 3

and so on. It therefore follows that the events {Xi
j = i}, i � 1, j � 1, are inde-

pendent and

P {i is a k-record value} = P {Xi
k = i} = P {X = i|X � i}

It now follows from the independence of the events {Xi
k = i}, i � 1, and the

fact that P {i is a k-record value} does not depend on k, that Rk has the same
distribution for all k � 1. In addition, it follows from the independence of the
events {Xi

k = 1}, that the random vectors Rk, k � 1, are also independent. �

Suppose now that the Xi, i � 1 are independent finite-valued random variables
with probability mass function

pi = P {X = i}, i = 1, . . . ,m

and let

T = min{n : Xi � Xn for exactly k of the values i, i = 1, . . . , n}
denote the first k-record index. We will now determine its mean.
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Proposition 3.3 Let λi = pi/
∑m

j=i pj , i = 1, . . . ,m. Then

E[T ] = k + (k − 1)

m−1∑

i=1

λi

Proof To begin, suppose that the observed random variables X1 X2, . . . take
on one of the values i, i + 1, . . . ,m with respective probabilities

P {X = j} = pj

pi + · · · + pm

, j = i, . . . ,m

Let Ti denote the first k-record index when the observed data have the preceding
mass function, and note that since the each data value is at least i it follows that
the k-record value will equal i, and Ti will equal k, if Xk = i. As a result,

E[Ti |Xk = i] = k

On the other hand, if Xk > i then the k-record value will exceed i, and so all data
values equal to i can be disregarded when searching for the k-record value. In
addition, since each data value greater than i will have probability mass function

P {X = j |X > i} = pj

pi+1 + · · · + pm

, j = i + 1, . . . ,m

it follows that the total number of data values greater than i that need be observed
until a k-record value appears has the same distribution as Ti+1. Hence,

E[Ti |Xk > i] = E[Ti+1 + Ni |Xk > i]
where Ti+1 is the total number of variables greater than i that we need observe
to obtain a k-record, and Ni is the number of values equal to i that are observed
in that time. Now, given that Xk > i and that Ti+1 = n (n � k) it follows that the
time to observe Ti+1 values greater than i has the same distribution as the number
of trials to obtain n successes given that trial k is a success and that each trial is
independently a success with probability 1 − pi/

∑
j�i pj = 1 − λi . Thus, since

the number of trials needed to obtain a success is a geometric random variable
with mean 1/(1 − λi), we see that

E[Ti |Ti+1,Xk > i] = 1 + Ti+1 − 1

1 − λi

= Ti+1 − λi

1 − λi

Taking expectations gives that

E[Ti |Xk > i] = E

[
Ti+1 − λi

1 − λi

∣
∣
∣Xk > i

]

= E[Ti+1] − λi

1 − λi
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Thus, upon conditioning on whether Xk = i, we obtain

E[Ti] = E[Ti |Xk = i]λi + E[Ti |Xk > i](1 − λi)

= (k − 1)λi + E[Ti+1]
Starting with E[Tm] = k, the preceding gives that

E[Tm−1] = (k − 1)λm−1 + k

E[Tm−2] = (k − 1)λm−2 + (k − 1)λm−1 + k

= (k − 1)

m−1∑

j=m−2

λj + k

E[Tm−3] = (k − 1)λm−3 + (k − 1)

m−1∑

j=m−2

λj + k

= (k − 1)

m−1∑

j=m−3

λj + k

In general,

E[Ti] = (k − 1)

m−1∑

j=i

λj + k

and the result follows since T = T1. �

3.7. An Identity for Compound Random Variables

Let X1,X2, . . . be a sequence of independent and identically distributed random
variables, and let Sn =∑n

i=1 Xi be the sum of the first n of them, n � 0, where
S0 = 0. Recall that if N is a nonnegative integer valued random variable that is
independent of the sequence X1,X2, . . . then

SN =
N∑

i=1

Xi

is said to be a compound random variable, with the distribution of N called the
compounding distribution. In this subsection we will first derive an identity in-
volving such random variables. We will then specialize to where the Xi are pos-
itive integer valued random variables, prove a corollary of the identity, and then
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use this corollary to develop a recursive formula for the probability mass function
of SN, for a variety of common compounding distributions.

To begin, let M be a random variable that is independent of the sequence
X1,X2, . . . , and which is such that

P {M = n} = nP {N = n}
E[N ] , n = 1,2, . . .

Proposition 3.4 The Compound Random Variable Identity
For any function h

E[SNh(SN)] = E[N ]E[X1h(SM)]
Proof

E[SNh(SN)] = E[
N∑

i=1

Xih(SN)]

=
∞∑

n=0

E[
N∑

i=1

Xih(SN)|N = n]P {N = n}

(by conditioning on N)

=
∞∑

n=0

E[
n∑

i=1

Xih(Sn)|N = n]P {N = n}

=
∞∑

n=0

E[
n∑

i=1

Xih(Sn)]P {N = n}

(by independence of N and X1, . . . ,Xn)

=
∞∑

n=0

n∑

i=1

E[Xih(Sn)]P {N = n}

Now, because X1, . . . ,Xn are independent and identically distributed, and
h(Sn) = h(X1 + · · · + Xn) is a symmetric function of X1, . . . ,Xn, it follows that
the distribution of Xih(Sn) is the same for all i = 1, . . . , n. Therefore, continuing
the preceding string of equalities yields

E[SNh(SN)] =
∞∑

n=0

nE[X1h(Sn)]P {N = n}

= E[N ]
∞∑

n=0

E[X1h(Sn)]P {M = n} (definition of M)
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= E[N ]
∞∑

n=0

E[X1h(Sn)|M = n]P {M = n}

(independence of M and X1, . . . ,Xn)

= E[N ]
∞∑

n=0

E[X1h(SM)|M = n]P {M = n}

= E[N ]E[X1h(SM)]

which proves the proposition. �

Suppose now that the Xi are positive integer valued random variables, and let

αj = P {X1 = j}, j > 0

The successive values of P {SN = k} can often be obtained from the following
corollary to Proposition 3.4.

Corollary 3.5

P {SN = 0} = P {N = 0}

P {SN = k} = 1

k
E[N ]

k∑

j=1

jαjP {SM−1 = k − j}, k > 0

Proof For k fixed, let

h(x) =
{

1, if x = k

0, if x �= k

and note that SNh(SN) is either equal to k if SN = k or is equal to 0 otherwise.
Therefore,

E[SNh(SN)] = kP {SN = k}
and the compound identity yields

kP {SN = k} = E[N ]E[X1h(SM)]

= E[N ]
∞∑

j=1

E[X1h(SM))|X1 = j ]αj
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= E[N ]
∞∑

j=1

jE[h(SM)|X1 = j ]αj

= E[N ]
∞∑

j=1

jP {SM = k|X1 = j}αj (3.33)

Now,

P {SM = k|X1 = j} = P

{
M∑

i=1

Xi = k

∣
∣
∣X1 = j

}

= P

{

j +
M∑

i=2

Xi = k

∣
∣
∣X1 = j

}

= P

{

j +
M∑

i=2

Xi = k

}

= P

{

j +
M−1∑

i=1

Xi = k

}

= P {SM−1 = k − j}

The next to last equality followed because X2, . . . ,XM and X1, . . . ,XM−1 have
the same joint distribution; namely that of M − 1 independent random variables
that all have the distribution of X1, where M − 1 is independent of these random
variables. Thus the proof follows from Equation (3.33). �

When the distributions of M − 1 and N are related, the preceding corollary
can be a useful recursion for computing the probability mass function of SN , as is
illustrated in the following subsections.

3.7.1. Poisson Compounding Distribution

If N is the Poisson distribution with mean λ, then

P {M − 1 = n} = P {M = n + 1}

= (n + 1)P {N = n + 1}
E[N ]
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= 1

λ
(n + 1)e−λ λn+1

(n + 1)!

= e−λ λn

n!
Consequently, M − 1 is also Poisson with mean λ. Thus, with

Pn = P {SN = n}

the recursion given by Corollary 3.5 can be written

P0 = e−λ

Pk = λ

k

k∑

j=1

j αj Pk−j , k > 0

Remark When the Xi are identically 1, the preceding recursion reduces to the
well-known identity for a Poisson random variable having mean λ:

P {N = 0} = e−λ

P {N = n} = λ

n
P {N = n − 1}, n � 1

Example 3.30 Let S be a compound Poisson random variable with λ = 4 and

P {Xi = i} = 1/4, i = 1,2,3,4

Let us use the recursion given by Corollary 3.5 to determine P {S = 5}. It gives

P0 = e−λ = e−4

P1 = λα1P0 = e−4

P2 = λ

2
(α1P1 + 2α2P0) = 3

2
e−4

P3 = λ

3
(α1P2 + 2α2P1 + 3α3P0) = 13

6
e−4

P4 = λ

4
(α1P3 + 2α2P2 + 3α3P1 + 4α4P0) = 73

24
e−4

P5 = λ

5
(α1P4 + 2α2P3 + 3α3P2 + 4α4P1 + 5α5P0) = 501

120
e−4 �
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3.7.2. Binomial Compounding Distribution

Suppose that N is a binomial random variable with parameters r and p. Then,

P {M − 1 = n} = (n + 1)P {N = n + 1}
E[N ]

= n + 1

rp

(
r

n + 1

)

pn+1(1 − p)r−n−1

= n + 1

rp

r!
(r − 1 − n)!(n + 1)! pn+1(1 − p)r−1−n

= (r − 1)!
(r − 1 − n)!n! pn(1 − p)r−1−n

Thus, M − 1 is a binomial random variable with parameters r − 1, p.

Fixing p, let N(r) be a binomial random variable with parameters r and p, and
let

Pr(k) = P {SN(r) = k}
Then, Corollary 3.5 yields that

Pr(0) = (1 − p)r

Pr(k) = rp

k

k∑

j=1

j αj Pr−1(k − j), k > 0

For instance, letting k equal 1, then 2, and then 3 gives

Pr(1) = rp α1(1 − p)r−1

Pr(2) = rp

2
[α1Pr−1(1) + 2α2Pr−1(0)]

= rp

2

[
(r − 1)pα2

1(1 − p)r−2 + 2α2(1 − p)r−1]

Pr(3) = rp

3

[
α1Pr−1(2) + 2α2Pr−1(1) + 3α3Pr−1(0)

]

= α1rp

3

(r − 1)p

2

[
(r − 2)pα2

1(1 − p)r−3 + 2α2(1 − p)r−2]

+ 2α2rp

3
(r − 1)p α1(1 − p)r−2 + α3rp(1 − p)r−1
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3.7.3. A Compounding Distribution Related to the Negative
Binomial

Suppose, for a fixed value of p, 0 < p < 1, the compounding random variable N

has a probability mass function

P {N = n} =
(

n + r − 1

r − 1

)

pr(1 − p)n, n = 0,1, . . .

Such a random variable can be thought of as being the number of failures that
occur before a total of r successes have been amassed when each trial is inde-
pendently a success with probability p. (There will be n such failures if the r th
success occurs on trial n + r . Consequently, N + r is a negative binomial random
variable with parameters r and p.) Using that the mean of the negative binomial
random variable N + r is E[N + r] = r/p, we see that E[N ] = r

1−p
p

.

Regard p as fixed, and call N an NB(r) random variable. The random variable
M − 1 has probability mass function

P {M − 1 = n} = (n + 1)P {N = n + 1}
E[N ]

= (n + 1)p

r(1 − p)

(
n + r

r − 1

)

pr(1 − p)n+1

= (n + r)!
r!n! pr+1(1 − p)n

=
(

n + r

r

)

pr+1(1 − p)n

In other words, M − 1 is an NB(r + 1) random variable.
Letting, for an NB(r) random variable N ,

Pr(k) = P {SN = k}
Corollary 3.5 yields that

Pr(0) = pr

Pr(k) = r(1 − p)

kp

k∑

j=1

j αj Pr+1(k − j), k > 0

Thus,

Pr(1) = r(1 − p)

p
α1Pr+1(0)

= rpr(1 − p)α1,
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Pr(2) = r(1 − p)

2p

[
α1Pr+1(1) + 2α2Pr+1(0)

]

= r(1 − p)

2p

[
α2

1(r + 1)pr+1(1 − p) + 2α2p
r+1]

Pr(3) = r(1 − p)

3p

[
α1Pr+1(2) + 2α2Pr+1(1) + 3α3Pr+1(0)

]

and so on.

Exercises

1. If X and Y are both discrete, show that
∑

x pX|Y (x|y) = 1 for all y such that
pY (y) > 0.

*2. Let X1 and X2 be independent geometric random variables having the same
parameter p. Guess the value of

P {X1 = i|X1 + X2 = n}

Hint: Suppose a coin having probability p of coming up heads is continually
flipped. If the second head occurs on flip number n, what is the conditional
probability that the first head was on flip number i, i = 1, . . . , n − 1?

Verify your guess analytically.

3. The joint probability mass function of X and Y , p(x, y), is given by

p(1,1) = 1
9 , p(2,1) = 1

3 , p(3,1) = 1
9 ,

p(1,2) = 1
9 , p(2,2) = 0, p(3,2) = 1

18 ,

p(1,3) = 0, p(2,3) = 1
6 , p(3,3) = 1

9

Compute E[X|Y = i] for i = 1,2,3.

4. In Exercise 3, are the random variables X and Y independent?

5. An urn contains three white, six red, and five black balls. Six of these balls are
randomly selected from the urn. Let X and Y denote respectively the number of
white and black balls selected. Compute the conditional probability mass function
of X given that Y = 3. Also compute E[X|Y = 1].
*6. Repeat Exercise 5 but under the assumption that when a ball is selected its
color is noted, and it is then replaced in the urn before the next selection is made.
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7. Suppose p(x, y, z), the joint probability mass function of the random vari-
ables X, Y , and Z, is given by

p(1,1,1) = 1
8 , p(2,1,1) = 1

4 ,

p(1,1,2) = 1
8 , p(2,1,2) = 3

16 ,

p(1,2,1) = 1
16 , p(2,2,1) = 0,

p(1,2,2) = 0, p(2,2,2) = 1
4

What is E[X|Y = 2]? What is E[X|Y = 2,Z = 1]?
8. An unbiased die is successively rolled. Let X and Y denote, respec-
tively, the number of rolls necessary to obtain a six and a five. Find (a) E[X],
(b) E[X|Y = 1], (c) E[X|Y = 5].
9. Show in the discrete case that if X and Y are independent, then

E[X|Y = y] = E[X] for all y

10. Suppose X and Y are independent continuous random variables. Show that

E[X|Y = y] = E[X] for all y

11. The joint density of X and Y is

f (x, y) = (y2 − x2)

8
e−y, 0 < y < ∞, −y � x � y

Show that E[X|Y = y] = 0.

12. The joint density of X and Y is given by

f (x, y) = e−x/ye−y

y
, 0 < x < ∞, 0 < y < ∞

Show E[X|Y = y] = y.

*13. Let X be exponential with mean 1/λ; that is,

fX(x) = λe−λx, 0 < x < ∞
Find E[X|X > 1].
14. Let X be uniform over (0, 1). Find E[X|X < 1

2 ].
15. The joint density of X and Y is given by

f (x, y) = e−y

y
, 0 < x < y, 0 < y < ∞

Compute E[X2|Y = y].
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16. The random variables X and Y are said to have a bivariate normal distribu-
tion if their joint density function is given by

f (x, y) = 1

2πσxσy

√
1 − ρ2

exp

⎧
⎨

⎩
− 1

2(1 − ρ2)

×
[(

x − μx

σx

)2

− 2ρ(x − μx)(y − μy)

σxσy

+
(

y − μy

σy

)2
]}

for −∞ < x < ∞, −∞ < y < ∞, where σx, σy, μx, μy , and ρ are constants
such that −1 < ρ < 1, σx > 0, σy > 0, −∞ < μx < ∞, −∞ < μy < ∞.

(a) Show that X is normally distributed with mean μx and variance σ 2
x , and

Y is normally distributed with mean μy and variance σ 2
y .

(b) Show that the conditional density of X given that Y = y is normal with
mean μx + (ρσx/σy)(y − μy) and variance σ 2

x (1 − ρ2).

The quantity ρ is called the correlation between X and Y . It can be shown
that

ρ = E[(X − μx)(Y − μy)]
σxσy

= Cov(X,Y )

σxσy

17. Let Y be a gamma random variable with parameters (s,α). That is, its den-
sity is

fY (y) = Ce−αyys−1, y > 0

where C is a constant that does not depend on y. Suppose also that the conditional
distribution of X given that Y = y is Poisson with mean y. That is,

P {X = i|Y = y} = e−yyi/i!, i � 0

Show that the conditional distribution of Y given that X = i is the gamma distri-
bution with parameters (s + i, α + 1).

18. Let X1, . . . ,Xn be independent random variables having a common distri-
bution function that is specified up to an unknown parameter θ . Let T = T (X)

be a function of the data X = (X1, . . . ,Xn). If the conditional distribution of
X1, . . . ,Xn given T (X) does not depend on θ then T (X) is said to be a sufficient
statistic for θ . In the following cases, show that T (X) = ∑n

i=1Xi is a sufficient
statistic for θ .



168 3 Conditional Probability and Conditional Expectation

(a) The Xi are normal with mean θ and variance 1.
(b) The density of Xi is f (x) = θe−θx, x > 0.
(c) The mass function of Xi is p(x) = θx(1 − θ)1−x , x = 0,1, 0 < θ < 1.
(d) The Xi are Poisson random variables with mean θ .

*19. Prove that if X and Y are jointly continuous, then

E[X] =
∫ ∞

−∞
E[X|Y = y]fY (y) dy

20. An individual whose level of exposure to a certain pathogen is x will con-
tract the disease caused by this pathogen with probability P(x). If the exposure
level of a randomly chosen member of the population has probability density func-
tion f , determine the conditional probability density of the exposure level of that
member given that he or she

(a) has the disease.
(b) does not have the disease.
(c) Show that when P(x) increases in x, then the ratio of the density of part (a)
to that of part (b) also increases in x.

21. Consider Example 3.12 which refers to a miner trapped in a mine. Let N

denote the total number of doors selected before the miner reaches safety. Also,
let Ti denote the travel time corresponding to the ith choice, i � 1. Again let X

denote the time when the miner reaches safety.

(a) Give an identity that relates X to N and the Ti .
(b) What is E[N ]?
(c) What is E[TN ]?
(d) What is E[∑N

i=1 Ti |N = n]?
(e) Using the preceding, what is E[X]?

22. Suppose that independent trials, each of which is equally likely to have any
of m possible outcomes, are performed until the same outcome occurs k consec-
utive times. If N denotes the number of trials, show that

E[N ] = mk − 1

m − 1

Some people believe that the successive digits in the expansion of π = 3.14159 . . .

are “uniformly” distributed. That is, they believe that these digits have all the
appearance of being independent choices from a distribution that is equally likely
to be any of the digits from 0 through 9. Possible evidence against this hypothesis
is the fact that starting with the 24,658,601st digit there is a run of nine successive
7s. Is this information consistent with the hypothesis of a uniform distribution?

To answer this, we note from the preceding that if the uniform hypothesis
were correct, then the expected number of digits until a run of nine of the same
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value occurs is

(109 − 1)/9 = 111,111,111

Thus, the actual value of approximately 25 million is roughly 22 percent of the
theoretical mean. However, it can be shown that under the uniformity assump-
tion the standard deviation of N will be approximately equal to the mean. As a
result, the observed value is approximately 0.78 standard deviations less than its
theoretical mean and is thus quite consistent with the uniformity assumption.

*23. A coin having probability p of coming up heads is successively flipped
until two of the most recent three flips are heads. Let N denote the number of
flips. (Note that if the first two flips are heads, then N = 2.) Find E[N ].
24. A coin, having probability p of landing heads, is continually flipped until at
least one head and one tail have been flipped.

(a) Find the expected number of flips needed.
(b) Find the expected number of flips that land on heads.
(c) Find the expected number of flips that land on tails.
(d) Repeat part (a) in the case where flipping is continued until a total of at
least two heads and one tail have been flipped.

25. A gambler wins each game with probability p. In each of the following
cases, determine the expected total number of wins.

(a) The gambler will play n games; if he wins X of these games, then he will
play an additional X games before stopping.
(b) The gambler will play until he wins; if it takes him Y games to get this win,
then he will play an additional Y games.

26. You have two opponents with whom you alternate play. Whenever you play
A, you win with probability pA; whenever you play B , you win with probability
pB , where pB > pA. If your objective is to minimize the number of games you
need to play to win two in a row, should you start with A or with B?

Hint: Let E[Ni] denote the mean number of games needed if you initially
play i. Derive an expression for E[NA] that involves E[NB ]; write down the
equivalent expression for E[NB ] and then subtract.

27. A coin that comes up heads with probability p is continually flipped until the
pattern T, T, H appears. (That is, you stop flipping when the most recent flip lands
heads, and the two immediately preceding it lands tails.) Let X denote the num-
ber of flips made, and find E[X].
28. Polya’s urn model supposes that an urn initially contains r red and b blue
balls. At each stage a ball is randomly selected from the urn and is then returned
along with m other balls of the same color. Let Xk be the number of red balls
drawn in the first k selections.
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(a) Find E[X1].
(b) Find E[X2].
(c) Find E[X3].
(d) Conjecture the value of E[Xk], and then verify your conjecture by a con-
ditioning argument.
(e) Give an intuitive proof for your conjecture.

Hint: Number the initial r red and b blue balls, so the urn contains one type
i red ball, for each i = 1, . . . , r ; as well as one type j blue ball, for each j =
1, . . . , b. Now suppose that whenever a red ball is chosen it is returned along
with m others of the same type, and similarly whenever a blue ball is chosen
it is returned along with m others of the same type. Now, use a symmetry
argument to determine the probability that any given selection is red.

29. Two players take turns shooting at a target, with each shot by player i hitting
the target with probability pi, i = 1,2. Shooting ends when two consecutive shots
hit the target. Let μi denote the mean number of shots taken when player i shoots
first, i = 1,2.

(a) Find μ1 and μ2.
(b) Let hi denote the mean number of times that the target is hit when player i

shoots first, i = 1,2. Find h1 and h2.

30. Let Xi, i � 0 be independent and identically distributed random variables
with probability mass function

p(j) = P {Xi = j}, j = 1, . . . ,m,

m∑

j=1

P(j) = 1

Find E[N ], where N = min{n > 0 : Xn = X0}.
31. Each element in a sequence of binary data is either 1 with probability p

or 0 with probability 1 − p. A maximal subsequence of consecutive values hav-
ing identical outcomes is called a run. For instance, if the outcome sequence is
1,1,0,1,1,1,0, the first run is of length 2, the second is of length 1, and the third
is of length 3.

(a) Find the expected length of the first run.
(b) Find the expected length of the second run.

32. Independent trials, each resulting in success with probability p, are per-
formed.

(a) Find the expected number of trials needed for there to have been both at
least n successes and at least m failures.
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Hint: Is it useful to know the result of the first n + m trials?

(b) Find the expected number of trials needed for there to have been either at
least n successes and at least m failures.

Hint: Make use of the result from part (a).

33. If Ri denotes the random amount that is earned in period i, then
∑∞

i=1 βi−1Ri,

where 0 < β < 1 is a specified constant, is called the total discounted reward with
discount factor β. Let T be a geometric random variable with parameter 1 − β

that is independent of the Ri . Show that the expected total discounted reward is
equal to the expected total (undiscounted) reward earned by time T . That is, show
that

E

[ ∞∑

i=1

βi−1Ri

]

= E

[
T∑

i=1

Ri

]

34. A set of n dice is thrown. All those that land on six are put aside, and the
others are again thrown. This is repeated until all the dice have landed on six. Let
N denote the number of throws needed. (For instance, suppose that n = 3 and that
on the initial throw exactly two of the dice land on six. Then the other die will be
thrown, and if it lands on six, then N = 2.) Let mn = E[N ].

(a) Derive a recursive formula for mn and use it to calculate mi , i = 2,3,4 and
to show that m5 ≈ 13.024.

(b) Let Xi denote the number of dice rolled on the ith throw. Find E[∑N
i=1 Xi].

35. Consider n multinomial trials, where each trial independently results in out-
come i with probability pi,

∑k
i=1 pi = 1. With Xi equal to the number of trials

that result in outcome i, find E[X1|X2 > 0].
36. Let p0 = P {X = 0} and suppose that 0 < p0 < 1. Let μ = E[X] and σ 2 =
Var(X). Find (a) E[X|X �= 0] and (b) Var(X|X �= 0).

37. A manuscript is sent to a typing firm consisting of typists A, B , and C. If it
is typed by A, then the number of errors made is a Poisson random variable with
mean 2.6; if typed by B , then the number of errors is a Poisson random variable
with mean 3; and if typed by C, then it is a Poisson random variable with mean
3.4. Let X denote the number of errors in the typed manuscript. Assume that each
typist is equally likely to do the work.

(a) Find E[X].
(b) Find Var(X).

38. Let U be a uniform (0, 1) random variable. Suppose that n trials are to be
performed and that conditional on U = u these trials will be independent with a
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common success probability u. Compute the mean and variance of the number of
successes that occur in these trials.

39. A deck of n cards, numbered 1 through n, is randomly shuffled so that all n!
possible permutations are equally likely. The cards are then turned over one at a
time until card number 1 appears. These upturned cards constitute the first cycle.
We now determine (by looking at the upturned cards) the lowest numbered card
that has not yet appeared, and we continue to turn the cards face up until that card
appears. This new set of cards represents the second cycle. We again determine
the lowest numbered of the remaining cards and turn the cards until it appears,
and so on until all cards have been turned over. Let mn denote the mean number
of cycles.

(a) Derive a recursive formula for mn in terms of mk, k = 1, . . . , n − 1.
(b) Starting with m0 = 0, use the recursion to find m1,m2,m3, and m4.
(c) Conjecture a general formula for mn.
(d) Prove your formula by induction on n. That is, show it is valid for n = 1,
then assume it is true for any of the values 1, . . . , n − 1 and show that this
implies it is true for n.
(e) Let Xi equal 1 if one of the cycles ends with card i, and let it equal 0
otherwise, i=1, . . . , n. Express the number of cycles in terms of these Xi .
(f) Use the representation in part (e) to determine mn.
(g) Are the random variables X1, . . . ,Xn independent? Explain.
(h) Find the variance of the number of cycles.

40. A prisoner is trapped in a cell containing three doors. The first door leads to
a tunnel that returns him to his cell after two days of travel. The second leads to a
tunnel that returns him to his cell after three days of travel. The third door leads
immediately to freedom.

(a) Assuming that the prisoner will always select doors 1, 2, and 3 with prob-
abilities 0.5, 0.3, 0.2, what is the expected number of days until he reaches
freedom?
(b) Assuming that the prisoner is always equally likely to choose among those
doors that he has not used, what is the expected number of days until he reaches
freedom? (In this version, for instance, if the prisoner initially tries door 1, then
when he returns to the cell, he will now select only from doors 2 and 3.)
(c) For parts (a) and (b) find the variance of the number of days until the pris-
oner reaches freedom.

41. A rat is trapped in a maze. Initially it has to choose one of two directions. If
it goes to the right, then it will wander around in the maze for three minutes and
will then return to its initial position. If it goes to the left, then with probability 1

3
it will depart the maze after two minutes of traveling, and with probability 2

3 it
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will return to its initial position after five minutes of traveling. Assuming that the
rat is at all times equally likely to go to the left or the right, what is the expected
number of minutes that it will be trapped in the maze?

42. A total of 11 people, including you, are invited to a party. The times at which
people arrive at the party are independent uniform (0,1) random variables.

(a) Find the expected number of people who arrive before you.
(b) Find the variance of the number of people who arrive before you.

43. The number of claims received at an insurance company during a week is a
random variable with mean μ1 and variance σ 2

1 . The amount paid in each claim is
a random variable with mean μ2 and variance σ 2

2 . Find the mean and variance of
the amount of money paid by the insurance company each week. What indepen-
dence assumptions are you making? Are these assumptions reasonable?

44. The number of customers entering a store on a given day is Poisson distrib-
uted with mean λ = 10. The amount of money spent by a customer is uniformly
distributed over (0,100). Find the mean and variance of the amount of money that
the store takes in on a given day.

45. An individual traveling on the real line is trying to reach the origin. However,
the larger the desired step, the greater is the variance in the result of that step.
Specifically, whenever the person is at location x, he next moves to a location
having mean 0 and variance βx2. Let Xn denote the position of the individual
after having taken n steps. Supposing that X0 = x0, find

(a) E[Xn];
(b) Var(Xn).

46. (a) Show that

Cov(X,Y ) = Cov(X,E[Y |X])

(b) Suppose, that, for constants a and b,

E[Y |X] = a + bX

Show that

b = Cov(X,Y )/Var(X)

*47. If E[Y |X] = 1, show that

Var(X Y) � Var(X)
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48. Give another proof of the result of Example 3.17 by computing the moment
generating function of

∑N
i=1Xi and then differentiating to obtain its moments.

Hint: Let

φ(t) = E

[

exp

(

t

N∑

i=1

Xi

)]

= E

[

E

[

exp

(

t

N∑

i=1

Xi

)∣
∣
∣
∣
∣
N

]]

Now,

E

[

exp

(

t

N∑

i=1

Xi

)∣
∣
∣
∣
∣
N = n

]

= E

[

exp

(

t

n∑

i=1

Xi

)]

= (φX(t))n

since N is independent of the Xs where φX(t) = E[etX] is the moment generating
function for the Xs. Therefore,

φ(t) = E
[
(φX(t))N

]

Differentiation yields

φ′(t) = E
[
N(φX(t))N−1φ′

X(t)
]
,

φ′′(t) = E
[
N(N − 1)(φX(t))N−2(φ′

X(t))2 + N(φX(t))N−1φ′′
X(t)

]

Evaluate at t = 0 to get the desired result.

49. A and B play a series of games with A winning each game with probabil-
ity p. The overall winner is the first player to have won two more games than the
other.

(a) Find the probability that A is the overall winner.
(b) Find the expected number of games played.

50. There are three coins in a barrel. These coins, when flipped, will come up
heads with respective probabilities 0.3, 0.5, 0.7. A coin is randomly selected from
among these three and is then flipped ten times. Let N be the number of heads
obtained on the ten flips. Find

(a) P {N = 0}.
(b) P {N = n}, n = 0,1, . . . ,10.
(c) Does N have a binomial distribution?
(d) If you win $1 each time a head appears and you lose $1 each time a tail
appears, is this a fair game? Explain.
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51. Do Exercise 50 under the assumption that each time a coin is flipped, it is
then put back in the barrel and another coin is randomly selected. Does N have a
binomial distribution now?

52. Suppose that X and Y are independent random variables with probability
density functions fX and fY . Determine a one-dimensional integral expression
for P {X + Y < x}.
*53. Suppose X is a Poisson random variable with mean λ. The parameter λ is
itself a random variable whose distribution is exponential with mean 1. Show that
P {X = n} = ( 1

2 )n+1.

54. A coin is randomly selected from a group of ten coins, the nth coin having
a probability n/10 of coming up heads. The coin is then repeatedly flipped until
a head appears. Let N denote the number of flips necessary. What is the proba-
bility distribution of N? Is N a geometric random variable? When would N be a
geometric random variable; that is, what would have to be done differently?

55. Suppose in Exercise 42 that, aside from yourself, the number of other peo-
ple who are invited is a Poisson random variable with mean 10.

(a) Find the expected number of people who arrive before you.
(b) Find the probability that you are the nth person to arrive.

56. Data indicate that the number of traffic accidents in Berkeley on a rainy day
is a Poisson random variable with mean 9, whereas on a dry day it is a Pois-
son random variable with mean 3. Let X denote the number of traffic accidents
tomorrow. If it will rain tomorrow with probability 0.6, find

(a) E[X];
(b) P {X = 0};
(c) Var(X).

57. The number of storms in the upcoming rainy season is Poisson distributed
but with a parameter value that is uniformly distributed over (0,5). That is, �

is uniformly distributed over (0,5), and given that � = λ, the number of storms
is Poisson with mean λ. Find the probability there are at least three storms this
season.

58. A collection of n coins is flipped. The outcomes are independent, and the
ith coin comes up heads with probability αi, i = 1, . . . , n. Suppose that for some
value of j, 1 � j � n,αj = 1

2 . Find the probability that the total number of heads
to appear on the n coins is an even number.

59. Let A and B be mutually exclusive events of an experiment. If independent
replications of the experiment are continually performed, what is the probability
that A occurs before B?

*60. Two players alternate flipping a coin that comes up heads with probabil-
ity p. The first one to obtain a head is declared the winner. We are interested in
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the probability that the first player to flip is the winner. Before determining this
probability, which we will call f (p), answer the following questions.

(a) Do you think that f (p) is a monotone function of p? If so, is it increasing
or decreasing?
(b) What do you think is the value of limp→1 f (p)?
(c) What do you think is the value of limp→0 f (p)?
(d) Find f (p).

61. Suppose in Exercise 29 that the shooting ends when the target has been hit
twice. Let mi denote the mean number of shots needed for the first hit when player
i shoots first, i = 1,2. Also, let Pi , i = 1,2, denote the probability that the first
hit is by player 1, when player i shoots first.

(a) Find m1 and m2.
(b) Find P1 and P2.

For the remainder of the problem, assume that player 1 shoots first.

(c) Find the probability that the final hit was by 1.
(d) Find the probability that both hits were by 1.
(e) Find the probability that both hits were by 2.
(f) Find the mean number of shots taken.

62. A,B , and C are evenly matched tennis players. Initially A and B play a set,
and the winner then plays C. This continues, with the winner always playing the
waiting player, until one of the players has won two sets in a row. That player is
then declared the overall winner. Find the probability that A is the overall winner.

63. Suppose there are n types of coupons, and that the type of each new coupon
obtained is independent of past selections and is equally likely to be any of the
n types. Suppose one continues collecting until a complete set of at least one of
each type is obtained.

(a) Find the probability that there is exactly one type i coupon in the final
collection.

Hint: Condition on T , the number of types that are collected before the
first type i appears.

(b) Find the expected number of types that appear exactly once in the final
collection.

64. A and B roll a pair of dice in turn, with A rolling first. A’s objective is to
obtain a sum of 6, and B’s is to obtain a sum of 7. The game ends when either
player reaches his or her objective, and that player is declared the winner.

(a) Find the probability that A is the winner.
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(b) Find the expected number of rolls of the dice.
(c) Find the variance of the number of rolls of the dice.

65. The number of red balls in an urn that contains n balls is a random variable
that is equally likely to be any of the values 0,1, . . . , n. That is,

P {i red, n − i non-red} = 1

n + 1
, i = 0, . . . , n

The n balls are then randomly removed one at a time. Let Yk denote the number
of red balls in the first k selections, k = 1, . . . , n.

(a) Find P {Yn = j}, j = 0, . . . , n.
(b) Find P {Yn−1 = j}, j = 0, . . . , n.
(c) What do you think is the value of P {Yk = j}, j = 0, . . . , n?
(d) Verify your answer to part (c) by a backwards induction argument. That is,
check that your answer is correct when k = n, and then show that whenever it
is true for k it is also true for k − 1, k = 1, . . . , n.

66. The opponents of soccer team A are of two types: either they are a
class 1 or a class 2 team. The number of goals team A scores against a
class i opponent is a Poisson random variable with mean λi , where λ1 = 2,
λ2 = 3. This weekend the team has two games against teams they are not very
familiar with. Assuming that the first team they play is a class 1 team with proba-
bility 0.6 and the second is, independently of the class of the first team, a class 1
team with probability 0.3, determine

(a) the expected number of goals team A will score this weekend.
(b) the probability that team A will score a total of five goals.

*67. A coin having probability p of coming up heads is continually flipped. Let
Pj (n) denote the probability that a run of j successive heads occurs within the
first n flips.

(a) Argue that

Pj (n) = Pj (n − 1) + pj (1 − p)[1 − Pj (n − j − 1)]
(b) By conditioning on the first non-head to appear, derive another equation
relating Pj (n) to the quantities Pj (n − k), k = 1, . . . , j .

68. In a knockout tennis tournament of 2n contestants, the players are paired and
play a match. The losers depart, the remaining 2n−1 players are paired, and they
play a match. This continues for n rounds, after which a single player remains
unbeaten and is declared the winner. Suppose that the contestants are numbered
1 through 2n, and that whenever two players contest a match, the lower num-
bered one wins with probability p. Also suppose that the pairings of the remain-
ing players are always done at random so that all possible pairings for that round
are equally likely.
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(a) What is the probability that player 1 wins the tournament?
(b) What is the probability that player 2 wins the tournament?

Hint: Imagine that the random pairings are done in advance of the tourna-
ment. That is, the first-round pairings are randomly determined; the 2n−1 first-
round pairs are then themselves randomly paired, with the winners of each pair
to play in round 2; these 2n−2 groupings (of four players each) are then ran-
domly paired, with the winners of each grouping to play in round 3, and so on.
Say that players i and j are scheduled to meet in round k if, provided they both
win their first k − 1 matches, they will meet in round k. Now condition on the
round in which players 1 and 2 are scheduled to meet.

69. In the match problem, say that (i, j), i < j , is a pair if i chooses j ’s hat and
j chooses i’s hat.

(a) Find the expected number of pairs.
(b) Let Qn denote the probability that there are no pairs, and derive a recursive
formula for Qn in terms of Qj, j < n.

Hint: Use the cycle concept.

(c) Use the recursion of part (b) to find Q8.

70. Let N denote the number of cycles that result in the match problem.

(a) Let Mn = E[N ], and derive an equation for Mn in terms of M1, . . . ,Mn−1.
(b) Let Cj denote the size of the cycle that contains person j . Argue that

N =
n∑

j=1

1/Cj

and use the preceding to determine E[N ].
(c) Find the probability that persons 1,2, . . . , k are all in the same cycle.
(d) Find the probability that 1,2, . . . , k is a cycle.

71. Use the equation following (3.14) to obtain Equation (3.10).

Hint: First multiply both sides of Equation (3.14) by n, then write a new
equation by replacing n with n − 1, and then subtract the former from the
latter.

72. In Example 3.25 show that the conditional distribution of N given that U1 =
y is the same as the conditional distribution of M given that U1 = 1 − y. Also,
show that

E[N |U1 = y] = E[M|U1 = 1 − y] = 1 + ey
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Figure 3.7.

*73. Suppose that we continually roll a die until the sum of all throws exceeds
100. What is the most likely value of this total when you stop?

74. There are five components. The components act independently, with com-
ponent i working with probability pi, i = 1,2,3,4,5. These components form a
system as shown in Figure 3.7.

The system is said to work if a signal originating at the left end of the dia-
gram can reach the right end, where it can pass through a component only if that
component is working. (For instance, if components 1 and 4 both work, then the
system also works.) What is the probability that the system works?

75. This problem will present another proof of the ballot problem of Exam-
ple 3.24.

(a) Argue that

Pn,m = 1 − P {A and B are tied at some point}
(b) Explain why

P {A receives first vote and they are eventually tied}
= P {B receives first vote and they are eventually tied}

Hint: Any outcome in which they are eventually tied with A receiving the
first vote corresponds to an outcome in which they are eventually tied with B

receiving the first vote. Explain this correspondence.

(c) Argue that P {eventually tied} = 2m/(n + m), and conclude that Pn,m =
(n − m)/(n + m).

76. Consider a gambler who on each bet either wins 1 with probability 18/38
or loses 1 with probability 20/38. (These are the probabilities if the bet is that a
roulette wheel will land on a specified color.) The gambler will quit either when
he or she is winning a total of 5 or after 100 plays. What is the probability he or
she plays exactly 15 times?
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77. Show that

(a) E[XY |Y = y] = yE[X|Y = y]
(b) E[g(X,Y )|Y = y] = E[g(X,y)|Y = y]
(c) E[XY ] = E[YE[X|Y ]]

78. In the ballot problem (Example 3.24), compute P {A is never behind}.
79. An urn contains n white and m black balls which are removed one
at a time. If n > m, show that the probability that there are always more
white than black balls in the urn (until, of course, the urn is empty) equals
(n − m)/(n + m). Explain why this probability is equal to the probability that
the set of withdrawn balls always contains more white than black balls. [This
latter probability is (n − m)/(n + m) by the ballot problem.]

80. A coin that comes up heads with probability p is flipped n consecutive times.
What is the probability that starting with the first flip there are always more heads
than tails that have appeared?

81. Let Xi, i �1, be independent uniform (0,1) random variables, and de-
fine N by

N = min{n: Xn < Xn−1}
where X0 = x. Let f (x) = E[N ].

(a) Derive an integral equation for f (x) by conditioning on X1.
(b) Differentiate both sides of the equation derived in part (a).
(c) Solve the resulting equation obtained in part (b).
(d) For a second approach to determining f (x) argue that

P {N � k} = (1 − x)k−1

(k − 1)!
(e) Use part (d) to obtain f (x).

82. Let X1,X2, . . . be independent continuous random variables with a common
distribution function F and density f = F ′, and for k � 1 let

Nk = min{n � k: Xn = kth largest of X1, . . . ,Xn}

(a) Show that P {Nk = n} = k−1
n(n−1)

, n � k.
(b) Argue that

fXNk
(x) = f (x)(F̄ (x))k−1

∞∑

i=0

(
i + k − 2

i

)

(F (x))i
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(c) Prove the following identity:

a1−k =
∞∑

i=0

(
i + k − 2

i

)

(1 − a)i, 0 < a < 1, k � 2

Hint: Use induction. First prove it when k = 2, and then assume it for k. To
prove it for k + 1, use the fact that

∞∑

i=1

(
i + k − 1

i

)

(1 − a)i =
∞∑

i=1

(
i + k − 2

i

)

(1 − a)i

+
∞∑

i=1

(
i + k − 2

i − 1

)

(1 − a)i

where the preceding used the combinatorial identity
(

m

i

)

=
(

m − 1

i

)

+
(

m − 1

i − 1

)

Now, use the induction hypothesis to evaluate the first term on the right side of
the preceding equation.

(d) Conclude that XNk
has distribution F .

83. An urn contains n balls, with ball i having weight wi, i = 1, . . . , n. The
balls are withdrawn from the urn one at a time according to the following scheme:
When S is the set of balls that remains, ball i, i ∈ S, is the next ball withdrawn with
probability wi/

∑
j∈S wj . Find the expected number of balls that are withdrawn

before ball i, i = 1, . . . , n.

84. In the list example of Section 3.6.1 suppose that the initial ordering at time
t = 0 is determined completely at random; that is, initially all n! permutations are
equally likely. Following the front-of-the-line rule, compute the expected position
of the element requested at time t .

Hint: To compute P {ej precedes ei at time t} condition on whether or not
either ei or ej has ever been requested prior to t .

85. In the list problem, when the Pi are known, show that the best ordering
(best in the sense of minimizing the expected position of the element requested)
is to place the elements in decreasing order of their probabilities. That is, if
P1 > P2 > · · · > Pn, show that 1,2, . . . , n is the best ordering.

86. Consider the random graph of Section 3.6.2 when n = 5. Compute the prob-
ability distribution of the number of components and verify your solution by using
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it to compute E[C]and then comparing your solution with

E[C] =
5∑

k=1

(
5

k

)
(k − 1)!

5k

87. (a) From the results of Section 3.6.3 we can conclude that there are(
n+m−1
m−1

)
nonnegative integer valued solutions of the equation x1 +· · ·+xm = n.

Prove this directly.
(b) How many positive integer valued solutions of x1 +· · ·+xm = n are there?

Hint: Let yi = xi − 1.

(c) For the Bose–Einstein distribution, compute the probability that exactly k

of the Xi are equal to 0.

88. In Section 3.6.3, we saw that if U is a random variable that is uniform on
(0,1) and if, conditional on U = p,X is binomial with parameters n and p, then

P {X = i} = 1

n + 1
, i = 0,1, . . . , n

For another way of showing this result, let U,X1,X2, . . . ,Xn be independent
uniform (0, 1) random variables. Define X by

X = #i: Xi < U

That is, if the n + 1 variables are ordered from smallest to largest, then U would
be in position X + 1.

(a) What is P {X = i}?
(b) Explain how this proves the result of Exercise 88.

89. Let I1, . . . , In be independent random variables, each of which is equally
likely to be either 0 or 1. A well-known nonparametric statistical test (called the
signed rank test) is concerned with determining Pn(k) defined by

Pn(k) = P

⎧
⎨

⎩

n∑

j=1

jIj � k

⎫
⎬

⎭

Justify the following formula:

Pn(k) = 1
2Pn−1(k) + 1

2Pn−1(k − n)

90. The number of accidents in each period is a Poisson random variable with
mean 5. With Xn,n � 1, equal to the number of accidents in period n, find E[N ]
when
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(a) N = min(n: Xn−2 = 2,Xn−1 = 1,Xn = 0);
(b) N = min(n: Xn−3 = 2,Xn−2 = 1,Xn−1 = 0,Xn = 2).

91. Find the expected number of flips of a coin, which comes up heads with
probability p, that are necessary to obtain the pattern h, t, h,h, t, h, t, h.

92. The number of coins that Josh spots when walking to work is a Poisson
random variable with mean 6. Each coin is equally likely to be a penny, a nickel,
a dime, or a quarter. Josh ignores the pennies but picks up the other coins.

(a) Find the expected amount of money that Josh picks up on his way to work.
(b) Find the variance of the amount of money that Josh picks up on his way to
work.
(c) Find the probability that Josh picks up exactly 25 cents on his way to work.

*93. Consider a sequence of independent trials, each of which is equally likely
to result in any of the outcomes 0,1, . . . ,m. Say that a round begins with the first
trial, and that a new round begins each time outcome 0 occurs. Let N denote the
number of trials that it takes until all of the outcomes 1, . . . ,m − 1 have occurred
in the same round. Also, let Tj denote the number of trials that it takes until j

distinct outcomes have occurred, and let Ij denote the j th distinct outcome to
occur. (Therefore, outcome Ij first occurs at trial Tj .)

(a) Argue that the random vectors (I1, . . . , Im) and (T1, . . . , Tm) are indepen-
dent.
(b) Define X by letting X = j if outcome 0 is the j th distinct outcome
to occur. (Thus, IX = 0.) Derive an equation for E[N ] in terms of E[Tj ],
j = 1, . . . ,m − 1 by conditioning on X.
(c) Determine E[Tj ], j = 1, . . . ,m − 1.

Hint: See Exercise 42 of Chapter 2.

(d) Find E[N ].
94. Let N be a hypergeometric random variable having the distribution of the
number of white balls in a random sample of size r from a set of w white and b

blue balls. That is,

P {N = n} =
(
w
n

)(
b

r−n

)

(
w+b

r

)

where we use the convention that
(
m
j

)= 0 if either j < 0 or j > m. Now, consider

a compound random variable SN = ∑N
i=1 Xi , where the Xi are positive integer

valued random variables with αj = P {Xi = j}.
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(a) With M as defined as in Section 3.7, find the distribution of M − 1.
(b) Suppressing its dependence on b, let Pw,r (k) = P {SN = k}, and derive a
recursion equation for Pw,r (k).

(c) Use the recursion of (b) to find Pw,r (2).


