
Principal Component Analysis and
Karhunen-Loeve Transform

Each of the orthogonal transforms discussed previously (Fourier trans-
form, cosine transform, Walsh-Hadamard transform, Haar transform, etc.) is
associated with an orthogonal (or unitary) matrix A that satisfies A−1 = AT

or ATA = A−1A = I. This orthogonal matrix can be expressed in terms of
its N column vectors:

A = [a0, · · · , aN−1], or AT =

⎡
⎢⎣ aT

0

· · ·
aT

N−1

⎤
⎥⎦

These column vectors are orthogonal and normalized (orthonormal):

(ai, aj) = aT
i aj = δij =

{
1 i = j
0 i �= j

and can be used as the basis vectors that span the N-dimensional vector
space.

As we have seen before, the transform of any given discrete signal, rep-
resented by a vector in the N-dimensional space x = [x0, · · · , xN−1]

T , can be
carried out as a matrix multiplication:

y =

⎡
⎢⎣

y0

· · ·
yN−1

⎤
⎥⎦ = ATx =

⎡
⎢⎣

aT
0

· · ·
aT

N−1

⎤
⎥⎦ x

where the ith component yi = aT
i x is the projection of the signal vector x

onto the ith basis vector ai. Left multiplying A on both sides of the equation
above, we get the inverse transform:

Ay = AATx = AA−1x = x

which can be rewritten as:

x = Ay = [a0, · · · , aN−1]

⎡
⎢⎣

y0

· · ·
yN−1

⎤
⎥⎦ =

N−1∑
i=0

yiai

We see that a given signal vector x is expressed by the inverse transform
as a linear combination of the orthogonal basis vectors ai, (i = 0, · · · , N −
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Figure 1: Rotation of coordinate system

1). Geometrically, the transform y = ATx represents a rotation of the
coordinate system of the N -dimensional space. The rotation is specified
by the orthogonal transform matrix A. As a special case, the orthogonal
transform matrix could be the identity matrix A = I = [e0, · · · , eN−1] where
ei = [0, · · · , 0, 1, 0, · · · , 0]T is the ith basis vector of the space with the ith
component being 1 and all others zeor. The transform associated with this
identity matrix is x = Ix, i.e., the original signal vector:

x =
N−1∑
i=0

xiei =

⎡
⎢⎢⎢⎣

x0

0
· · ·
0

⎤
⎥⎥⎥⎦ + · · ·+

⎡
⎢⎢⎢⎣

0
· · ·
0

xN−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x0

x1

· · ·
xN−1

⎤
⎥⎥⎥⎦

After seeing quite a few different transform methods and their applica-
tions discussed in the previous chapters, we may want to ask some more
general questions regarding the common natures of these transforms. Why
do we want to carry out such transforms to start with? Do different trans-
forms share some intrinsic properties and essential characteristics in com-
mon? If an orthogonal transform is nothing more than a certain rotation in
the N-dimensional vector space, what can be achieved by such a rotation?
And, finally, is there an optimal rotation among all possible transform ro-
tations? We will address such questions in the following discussion for the
Karhunen-Loeve Transform (KLT) and the associated principal component
analysis (PCA).

2



Signal Correlation

First let us quickly review some basic concepts of multivariate random vari-
ables. A time signal x(t) can be considered as a random process and its
samples xm (m = 0, · · · , N − 1) form a random vector represented by x:

x = [x0, · · · , xN−1]
T

with the mean vector

mx
�
= E(x) = [E(x0), · · · , E(xN−1)]

T = [μ0, · · · , μN−1]
T

and the covariance matrix

Σx
�
= E[(x − mx)(x − mx)

T ] = E(xxT ) −mxmx
T =

⎡
⎢⎣

.. .. ..

.. σ2
ij ..

.. .. ..

⎤
⎥⎦

where μi = E(xi) is the expectation or mean of xi, and σ2
ij

�
= E(xi−μi)(xj −

μj) = E(xixj) − μiμj is the covariance of two random variables xi and xj .

When i = j, σ2
ij becomes the variance of xi, σ2

i
�
= E(xi − μi)

2 = E(x2
i ) − μ2

i .
Moreover, the correlation coefficient between two variables xi and xj is

defined as

ρij =
σ2

ij

σiσj

which can be considered as the normalized version of the covariances so that
when xi = xj , ρij = 1.

After a certain orthogonal transform of a given random vector x, the
resulting vector y = ATx is still random with the following mean vector and
covariance matrix:

my = E(y) = E(ATx) = AT E(x) = ATmx

Σy = E[(y −my)(y −my)
T ] = E[AT (x − mx)(x −mx)

TA]

= ATE[(x −mx)(x −mx)
T ]A = ATΣxA
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The mean and the variance of a component xi of a random vector x can be
estimated by averaging the outcomes of the random experiment concerning
the variable repeated K times:

μ̂i =
1

K

K∑
k=1

x
(k)
i , σ̂2

i =
1

K

K∑
k=1

(x
(k)
i − μ̂i)

2 =
1

K

K∑
k=1

(x
(k)
i )2 − μ̂2

i

and the covariance between two variables xi and xj can be estimated as

σ̂2
ij =

1

K

K∑
k=1

(x
(k)
i − μ̂i)(x

(k)
j − μ̂j) =

1

K

K∑
k=1

x
(k)
j x

(k)
j − μ̂iμ̂j

The meaning of the covariance σ2
ij between two random variables xi and xj

can be illustrated by the following examples.

1. Assume an experiment concerning xi and xj is repeated K = 3 times
with the following outcomes:

Experiment 1st 2nd 3rd

x
(k)
i 1 2 3

x
(k)
j 1 2 3

The means and covariances of xi and xj can be estimated as

μ̂i =
1

K

K∑
k=1

x
(k)
i = μ̂j =

1

K

K∑
k=1

x
(k)
j = 2

σ̂2
ij =

1

K

K∑
k=1

x
(k)
i x

(k)
j − μ̂iμ̂j = (1× 1 + 2× 2 + 3× 3)/3− 2× 2 = 0.667

ρ̂ij =
σ̂2

ij

σ̂iσ̂j

= 1

In this case xi and xj are maximally correlated.

2. Assume the outcomes of the 3 experiments are

Experiment 1st 2nd 3rd

x
(k)
i 1 2 3

x
(k)
j 3 2 1

We have μ̂i = μ̂j = 2, σ̂2
ij = −0.667, and ρ̂ij = −1, indicating that the

two variables are negatively or inversely correlated.
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3. Assume the outcomes are:

Experiment 1st 2nd 3rd
xi 1 2 3
xj 2 2 2

We have μ̂i = μ̂j = 2, σ̂2
ij = 0, and ρ̂ij = 0, indicating that the two

variables are totally uncorrelated.

4. Assume the outcomes are:

Experiment 1st 2nd 3rd

x
(k)
i 2 2 2

x
(k)
j 1 2 3

We have μ̂i = μ̂j = 2, σ̂2
ij = 0, and ρ̂ij = 0, indicating that the two

variables are totally uncorrelated.

5. Combine the outcomes of the two previous cases (K = 5):

Experiment 1st 2nd 3rd 4th 5th

x
(k)
i 1 2 2 2 3

x
(k)
j 2 1 2 3 2

We still have μ̂i = μ̂j = 2, σ̂2
ij = 0 and ρ̂ij = 0, indicating that the two

variables are totally uncorrelated.

From the above examples we see that the covariance σ2
ij represents how much

the two variables xi and xj are correlated. If σ2
ij > 0, they are positively

correlated, σ2
ij < 0 they are negatively correlated, and if σ2

ij = 0, they are
uncorrelated at all.

Karhunen-Loeve Transform (KLT)

Now we consider the Karhunen-Loeve Transform (KLT) (also known as
Hotelling Transform and Eigenvector Transform), and the associated Prin-
cipal Component Analysis (PCA), which is widely used for data analysis in
mnay different fields.
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Let φk be the eigenvector corresponding to the kth eigenvalue λk of the
covariance matrix Σx, i.e.,

Σxφk = λkφk (k = 0, · · · , N − 1)

or in matrix form:⎡
⎢⎣
· · · · · · · · ·
· · · σij · · ·
· · · · · · · · ·

⎤
⎥⎦

⎡
⎢⎣ φk

⎤
⎥⎦ = λk

⎡
⎢⎣ φk

⎤
⎥⎦ (k = 0, · · · , N − 1)

As the covariance matrix Σx = ΣT
x is positive definte and symmetric (Her-

mitian if x is complex), all of its eigenvalues λi > 0 are positive and its
eigenvectors φi’s are orthogonal:

(φi, φj) = φT
i , φj =

{
1 i = j
0 i �= j

These N orthonormal eigenvectors can be used as the basis vectors of the
N-dimensional vector space, and they can be used to construct an N × N
orthogonal matrix Φ:

Φ
�
= [φ0, · · · , φN−1]

that satisfies
ΦTΦ = I, i.e., Φ−1 = ΦT

The N eigenequations above can be combined to be expressed as:⎡
⎢⎣
· · · · · · · · ·
· · · σij · · ·
· · · · · · · · ·

⎤
⎥⎦ [φ0, · · · , φN−1] = [φ0, · · · , φN−1]

⎡
⎢⎣

λ0 · · · · · ·
· · · λi · · ·
· · · · · · λN−1

⎤
⎥⎦

or in matrix form:
ΣxΦ = ΦΛ

where Λ is a diagonal matrix Λ = diag(λ0, · · · , λN−1). Left multiplying
ΦT = Φ−1 on both sides, the covariance matrix Σx can be diagonalized:

ΦTΣxΦ = ΦTΦΛ = Φ−1ΦΛ = Λ

We can now define the Karhunen-Loeve Transform of a given signal vector
x as

y =

⎡
⎢⎣

y0

· · ·
yN−1

⎤
⎥⎦ = ΦTx =

⎡
⎢⎣

φT
0

· · ·
φT

N−1

⎤
⎥⎦ x
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where the ith component yi of the transform vector is the projection of x
onto the ith basis vector φi:

yi = (φi,x) = φT
i x

Left multiplying Φ = (ΦT )−1 on both sides of the transform equation y =
ΦTx, we get the inverse transform:

x = Φy = [φ0, · · · , φN−1]

⎡
⎢⎣

y0

· · ·
yN−1

⎤
⎥⎦ =

N−1∑
i=0

yiφi

We see that by KLT transform, the signal vector x is expressed in the N-
dimensional vector space spanned by the N eigenvectors φi (i = 0, · · · , N−1).
As shown below, representing a given signal vector x by this particular set
of basis vectors is most advantageous in two specific aspects.

KLT Completely Decorrelates the Signal

Compared with all possible orthogonal transforms, KLT is optimal in terms
of the following two properties:

• KLT completely decorrelates the signal

• KLT maximally compacts the energy (information) contained in the
signal.

As seen before, most other orthogonal transforms can decorrelate the signal
and compact the signal energy into a small number of components to different
extents, the KLT transform does these optimally.

The first property is simply due to the definition of the KLT transform,
i.e., the covariance matrix is diagonalized after thr transform. The second
property is due to the fact that KLT redistributes the energy among the N
components in such a way that the energy is maximally compacted into a
small number of components of y = ΦTx.

To see the first property, simply recall that the covariance matrix of the
signal after a transform y = ATx becomes:

Σy = E[(y − my)(y − my)
T ] = AT E[(x − mx)(x − mx)

T ]A = ATΣxA
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In this particular case, y = ΦTx and we have

Σy = ΦTΣxΦ = Λ

or in matrix form:

Σy =

⎡
⎢⎣
· · · · · · · · ·
· · · σij · · ·
· · · · · · · · ·

⎤
⎥⎦ = ΦTΣxΦ = Λ =

⎡
⎢⎢⎢⎣

λ0 0 · · · 0
0 λ0 · · · 0
· · · · · · · · ·
0 · · · λN−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

σ2
0 0 · · · 0
0 σ2

1 · · · 0
· · · · · · · · · · · ·
0 0 · · · σ2

N−1

⎤
⎥⎥⎥⎦

We can make two observations:

• After KLT, the covariance matrix of the signal y = ΦTx is diagonalized,
i.e., the covariance σij between any two different components yi and yj

is always zero. In other words, the signal is completely decorrelated.

• The variance of yi is the ith eigenvalue of the covariance matrix of x,
i.e., σ2

i = λi.

KLT Optimally Compacts the Energy

Now we show that KLT redistributes the energy contained in the signal so
that it is maximally compacted into a small number of components after
the transform. Let A = [a0, · · · , aN−1] be an arbitrary orthogonal matrix
satisfying A−1 = AT . An orthogonal transform of a given signal vector x
can be defined as

y =

⎡
⎢⎣

y0

· · ·
yN−1

⎤
⎥⎦ = ATx =

⎡
⎢⎣

aT
0

· · ·
aT

N−1

⎤
⎥⎦ x

where the ith component of y is yi = aT
i x. The inverse transform is:

x = Ay = [a0, · · · , aN−1]

⎡
⎢⎣

y0

· · ·
yN−1

⎤
⎥⎦ =

N−1∑
i=0

yiai

Consider the variances of the signal components before and after the KLT
transform:

σ2
xi

= E[(xi − μxi
)2]

�
= E(exi

), and σ2
yi

= E[(yi − μyi
)2]

�
= E(eyi

)
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where exi

�
= (xi − μxi

)2 can be considered as the dynamic energy or infor-
mation contained in the ith component of the signal, and the trace of the
covarance matrix trΣx represents the total energy or information contained
in the signal:

trΣx =
N−1∑
i=0

σ2
xi

=
N−1∑
i=0

E[(xi − μxi
)2] =

N−1∑
i=0

E(exi
)

Due to the commutativity of trace: tr(AB) = tr(BA), we have:

trΣy = tr(ATΣxA) = tr(ATAΣx)) = trΣx

We see that the total energy or information of the signal is conserved after the
KLT transform. However, as shown below, the energy redistribution among
the N signal components is drasticallychanged in such a way that the energy
is optimally compacted into a small number of components.

Define the energy contained in the first M < N components after the
transform y = ATx as

SM(A)
�
=

M−1∑
i=0

E[(yi − μyi
)2] =

M−1∑
i=0

σ2
yi

=
M−1∑
i=0

E(eyi
)

Since the total energy SN (A) =
∑N−1

i=0 E(exi
) is conserved, SM(A) represents

the percentage of energy contained in the first M components. We now show
that SM(A) is maximized if and only if the transform matrix A is Φ, the
transform matrix of the KLT:

SM(Φ) ≥ SM(A)

i.e., the KLT optimally compacts energy into a small number of components
of the signal. Consider

SM(A) =
M−1∑
i=0

E(yi − μyi
)2 =

M−1∑
i=0

E[aT
i (x − mxi

) aT
i (x −mxi

)]

=
M−1∑
i=0

aT
i E[(x − mxi

)(x −mxi
)T ]aT

i =
M−1∑
i=0

aT
i Σxai

The optimal transform matrix A should therefore satisfy{
SM(A) =

∑M−1
i=0 aT

i Σxai → max
subject to: aT

j aj = 1 (j = 0, · · · , M − 1)
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The constraint aT
j aj = 1 is to guarantee that the column vectors of A are or-

thogonal and normalized. This constrained optimization problem can be
solved using Lagrange multiplier method by letting the following partial
derivative be zero:

∂

∂ai

[SM (A) −
M−1∑
j=0

λj(a
T
j aj − 1)] =

∂

∂ai

[
M−1∑
j=0

(aT
j Σxaj − λja

T
j aj + λj)]

=
∂

∂ai
[aT

i Σxai − λia
T
i ai]

∗
= 2Σxai − 2λiai = 0

(The equal sign with a * is due to the derivative of a scalar function with
respect to its vector argument, see appendix A). We see that the column
vectors of A must be the eigenvectors of Σx:

Σxai = λiai (i = 0, · · · , M − 1)

i.e., the optimal transform matrix is

A = [a0, · · · , aN−1] = Φ = [φ0, · · · , φN−1]

where φi’s are the orthogonal eigenvectors of Σx corresponding to eigenvalues
λi (i = 0, · · · , N − 1):

Σxφi = λiφi, i.e. φTΣxφi = λiφ
T
i φi = λi

Thus we have proved that the optimal transform is indeed the KLT transform,
and

SM(Φ) =
M−1∑
i=0

φT
i Σxφi =

M−1∑
i=0

λi

where the ith eigenvalue λi of Σx is also the average energy contained in
the ith component of the signal. If we choose the M φ′

is that correspond to
the M largest eigenvalues of Σx: λ0 ≥ · · ·λM−1 · · · ≥ λN−1, then SM(Φ) is
maximized.

Due to its properties of signal decorrelation and energy compaction, KLT
can be used to reduce the dimensionality of the data set for data compression.
The signal components after the KLT are called the principal components,
and the data analysis method based on the KLT transform is called principal
component analysis (PCA), which is widely used in a large variety of fields.

In summary, the PCA can be carried out in the following steps:
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1. Estimate the mean vector mx and the covariance matrix Σx of the
signal vectors x.

2. Find Σx’s eigenvalues λi and associated eigenvector φi (i = 0, · · · , N −
1). Sort the eigenvalues in descending order, together with their corre-
sponding eigenvectors.

3. Choose a lowered dimensionality M < N so that the percentage of
energy contained

∑M−1
i=0 λi/

∑N−1
i=0 λi is no less than a given threshold

(e.g., 95%).

4. Construct an N by M transform matrix composed of M eigenvectors
corresponding to the M largest eigenvalues of Σx:

ΦM = [φ0, · · · , φM−1]N×M

and carry out KLT based on ΦM :

y = ΦT
Mx

or ⎡
⎢⎣

y0

· · ·
yM−1

⎤
⎥⎦

M×1

=

⎡
⎢⎣

φT
0

· · ·
φT

M−1

⎤
⎥⎦

M×N

⎡
⎢⎣

x0

· · ·
xN−1

⎤
⎥⎦

N×1

As the dimensionality M of y is less than the dimensionality N of x,
data compression is achieved for storage and/or transmission. This
is a lossy compression with the error representing the percentage of
information lost:

∑N−1
i=M λi/

∑N−1
i=0 λi. But as these λi’s are the smallest

eigenvalues, the error is minimum (e.g., 5%).

5. Carry out inverse KLT for reconstruction:

x = ΦMy

or ⎡
⎢⎣

x0

· · ·
xN−1

⎤
⎥⎦

N×1

=
[

φ0 · · ·φM−1

]
N×M

⎡
⎢⎣

y0

· · ·
yM−1

⎤
⎥⎦

M×1
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Although KLT is optimal, other transforms are still widely used for two
reasons. First, the KLT transform depends on the specific data set being
processed, as the transform matrix is composed of the eiganvectors of the
covariance matrix Σx of the signal vector x, which can be estimated only
if sufficient amount of data is available. Second, the computational cost
for KLT is much higher than other transforms. This is because there does
not exist any fast algorithm for the KLT transform, and the computation
complexity of the KLT transform is O(N2), instead of O(N log2 N) for most
of other transforms discussed before. Moreover, in order to obtain the KLT
transform matrix Phi, we also need to estimate the covariance matrix Σx

from the available data, and to solve its eigenvalue problem. These tasks
will further increase the computational complexity significantly. For these
reasons, in many applications, the DCT transform (or some other transform)
is the more preferable method.

Geometric Interpretation of KLT

Assume the N random variables in a signal vector x = [x0, · · · , xN−1]
T have

a normal joint probability density function:

p(x0, · · · , xN−1) = p(x) = N(x,mx,Σx) =
1

(2π)N/2 |Σx|1/2
exp[−1

2
(x−mx)

TΣ−1
x (x−mx)]

In particular, when N = 1, Σx and mx become σx and μx, respectively, and
the density function becomes the familiar single variable normal distribution:

p(x) = N(x, μx, σx) =
1√

2πσ2
x

exp[−(x − μx)
2

2σ2
x

]

The shape of this normal distribution in the N-dimensional space can be
found by considering the iso-value hyper-surface in the space determined by
equation

N(x,mx,Σx) = c0

where c0 is a constant. Or, equivalently, this equation can be written as

(x − mx)
TΣ−1

x (x −mx) = c1
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where c1 is another constant related to c0, mx and Σx. In particular, with
N = 2 variables x0 and x1, we have

(x − mx)
TΣ−1

x (x − mx) = [x0 − μx0, x1 − μx1 ]

[
a b/2

b/2 c

] [
x0 − μx0

x1 − μx1

]

= a(x0 − μx0)
2 + b(x0 − μx0)(x1 − μx1) + c(x1 − μx1)

2 = c1

Here we have assumed

Σ−1
x =

[
a b/2

b/2 c

]

As Σ−1
x and Σx are positive definite, i.e.,

∣∣∣Σ−1
x

∣∣∣ = ac − b2/4 > 0

the above quadratic equation represents an ellipse (instead of other quadratic
curves such as a hyperbola or a parabola) centered at mx = [μ0, μ1]

T , When
N > 2, the equation N(x,mx,Σx) = c0 represents a hyper ellipsoid in the
N-dimensional space. The center and spatial distribution of this ellipsoid
are determined by mx and Σx, respectively. When x = [x0, · · · , xN−1]

T is
completely decorrelated by KLT:

y = ΦTx

the covariance matrix becomes diagonalized:

Σy = Λ =

⎡
⎢⎢⎢⎣

λ0 0 · · · 0
0 λ1 · · · 0
· · · · · · · · · · · ·
0 0 · · · λN−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

σ2
y0

0 · · · 0
0 σ2

y1
· · · 0

· · · · · · · · · · · ·
0 0 · · · σ2

yN−1

⎤
⎥⎥⎥⎥⎦

and the quadratic equation becomes:

(y − my)
TΣ−1

y (y − my) =
N−1∑
i=0

(yi − μyi
)2

λi

=
N−1∑
i=0

(yi − μyi
)2

σ2
yi

= c1

This equation represents a standard ellipsoid in the N-dimensional space. In
other words,the KLT transform y = ΦTx rotates the coordinate system in
such a way that the semi-principal axes of the ellipsoid associated with the
normal distribution of x are in parallel with φi (i = 0, · · · , N −1), the axes of
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Figure 2: Geometric interpretation of KLT

the new coordinate system. Moreover, the length of the semi-principal axis
parallel to the basis vector φi is equal to the square root of the corresponding
eigenvalue

√
λi = σyi

.
The standardization of the ellipsoid is the essential reason why the ro-

tation of KLT can achieve two highly desirable outcomes: (a) the complete
decorrelation of the signal components, and (b) optimal distribution and com-
paction of the energy or information contained in the signal, as illustrated in
the figure below.

Comparison with Other Orthogonal Transforms

To illustrate the optimality of the KLT transform in terms of the two de-
sirable properties discussed above, we compare KLT with other orthogo-
nal transforms such as identity transform (no transform), Walsh-Hadamard
transform, discrete cosine transform and discrete Fourier transform DFT in
the following examples.
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Figure 3: Image of clouds and covariance matrics after various transforms

Example 1
Each row of a 256 × 256 image of clouds (left panel in the figure below)

can be treated as one observation of a 1D random vector x (with 256 com-
ponents). Different orthogonal transforms y = ATx are carried out and the
corresponding covariance matrices Σy are obtained and compared to see how
well each transform decorrelates the signal and compacts its energy. The
figure below shows the original image (left panel) and three covariance ma-
trices corresponding to no transform (identify transform matrix), DCT, and
KLT. As the behaviors of DFT and WHT are very similar to that of DCT,
they are not discussed here. The pixel intensities of the images for covariance
matrices are rescaled by a mapping y = x0.3 so that those low values can still
be visible.

In the secnd panel showing the covariance matrix of the original signal
without any transform, there exist quite a lot bright areas off the main diag-
onal, indicating that many signal components are highly correlated (σ2

ij > 0).
In the third panel showing the covariance matrix after a DCT, the values of
the off-diagonal elements are much reduced, indicating that the signal com-
ponents are significantly decorrelated. Finally, in the last panel showing the
covariance matrix after a KLT, the off-diagonal elements are zero, i.e., the
signal components are completely decorrelated.

The effect of energy compaction can also be seen in the figure, as the
brightness of the elements along the main diagonal is gradually reduced from
top-left to bottom-right. This effect is more clearly shown in the figure
below, where the energy distribution among the N elements is plotted. The
flat curve is the original energy distribution (no transform), while the curve
of steepest descent (high on the left and low on the right) represents the
energy distribution after KLT. The intermediate ones are by DCT and WHT
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Figure 4: Signal energy distribution after various transforms

with similar effects.
The effect of energy compaction is also illustrated by the table below

showing the number of components needed in order to keep certain percent-
age of the total dynamic energy (information) in the signal. For example, if
one wants to keep 99% of the total energy contained in the original signal,
250 out of the total 256 components are needed without transform, 97 out
of 256 are needed after DCT, and only 55 are needed after KLT.

Percentage: 90 95 99 100
no transform: 209 230 250 256 (all)
DCT: 10 22 97 256 (all)
KLT: 7 13 55 256 (all)

Based on the example above, some observations could be made. First, all
orthogonal transforms have the tendency of decorrelating the given signals,
and KLT does it optimally. Specifically, given the value of a time sample of
a signal as a function of time (e.g., the temperature as a function of time),
the value of the next sample can be predicted with reasonable confidence
to be close to the current one, i.e., two consecutive time samples are highly
correlated. On the other hand, after an orthogonal transform, the magnitude
(or the energy proportional to the magnitude squared) of a certain frequency
component bares little information in terms of the magnitude (or energy) of
the next frequency component, i.e., the two frequency components are much
less correlated than the time samples before the transform.

Second, at the same time, an orthogonal transform tends to compact the
energy contained in the signal into a small number of signal components. For
example, after a DFT or DCT, most of the energy is concentrated in a small
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number of low frequency components as well as the DC component. Most of
the high frequency components carry little energy.

Third, although the KLT is optimal in terms of signal decorrelation and
energy compaction, the performance of other transforms are not too different
from that of the KLT. In the example above, the performance of DCT is
reasonably close to that of the KLT, indicating that the DCT could be used as
a suboptimal transform to achieve significant signal decorrelation and energy
compaction, although not optimally, but with much reduced computational
complexity.

Example 2
The example above clearly demonstrates that after an orthogonal trans-

form the signal is less correlated and its energy more compacted. However,
is this always true? The answer is, it depends on the nature of the specific
signal at hand. The general claim that orthogonal transforms tend to reduce
signal correlation is based on an implicit assumption that signals in reality
are mostly continuous and smooth due to the nature of underlying physics.
Given the value of the current sample of a time signal, one could estimate
the value of the next sample to be within a certain neighborhood of the cur-
rent one (i.e., the two signal components are highly correlated), as any major
discontinuity in a time signal corresponds to an energe surge in the physical
process, which is in general not very likely.

However, when the assumption of smooth signal is not necessarily valid,
orthogonal transforms such as DCT may not perform well in terms of signal
decorrelation and energy compaction, sometimes the signal correlation may
even increase after the transform. Also the energy is not necessarily always
compacted by the transform. This is illustrated in the following example.

The left panel of the figure below is an image showing the texture of sand,
where the pixels are not correlated as in the image of clouds, since the color
of a grain of sand is not related to that of the neighboring grains. The second
panel shows the covariance matrix of the row vectors of the image, where all
off-diagonal elements have very low values, indicating the pixels are hardly
correlated. In comparison, the third panel shows the covariance matrix after
the DCT, with most of the off-diagonal elements having higher values than
those before the transform, indicating the signal correlation is significantly
increased. Finally, the last panel is the covariance matrix after the KLT,
showing that the signal is completely decorrelated.

The energy distribution plots shown below indicate that DCT does not
make any improvement in term of energy compaction, compared to the orig-
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Figure 5: Image of sands and covariance matrics after various transforms

Figure 6: Signal energy distribution after various transforms

inal signal (the two very similar flat plots), but KLT can still compact the
energy (the other plot high on the left low on the right), although this com-
paction by KLT is much less effective than in the previous example.

From the two examples above, one can see that whether an orthogonal
transform can decorrelate the signal or not depends on the nature of the
signal. If it is initially highly correlated, as is true for most of the physi-
cal signals, orthogonal transform will significantly decorrelate the signal, as
well as compacting its energy. This is essentially the reason why orthogonal
transforms are widely used in data processing. However, in the not too likely
case where the signal is not correlated to start with, an orthogonal transform
may not reduce the signal correlation, sometimes it may even increase it, as
shown in the second example above. Only the KLT can always guarantee
that the signal is complete decorrelated, and its energy optimally compacted.

Example 3
While the KLT is the optimal transform in terms of energy compaction,

all other orthogonal transforms share the same property to a less extent,
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as discussed before. Here we take another look at this property through a
specific example, referred to as Fourier descriptor in image processing liter-
atures.

A two-dimensional shape in an image can be described by all the pix-
els along its boundary, in terms of there coordinates (x[m], y[m]), (m =
0, · · · , N − 1), where N is the total number of pixels along the boundary.
The coordinates x[m] and y[m] can be treated, respectively, as the real and
imaginary components of a complex number z[m] = x[m] + j y[m], and
the Fourier transform can be carried out to obtain the Fourier coefficients
(Fourier descriptors) of the shape:

Z[n] =
1√
N

N−1∑
m=0

z[m]e−j2πmn/N , n = 0, · · · , N − 1

Based on these coefficients Z[n], the original shape can be reconstructed by
inverse Fourier transform:

z[m] =
1√
N

N−1∑
n=0

Z[n]ej2πmn/N , m = 0, · · · , N − 1

The inverse Fourier transform using all N coefficients will perfectly recon-
struct the original one. While this result is not surprising at all, it is in-
teresting to observe the reconstructed shape using only the first M < N
low frequency components. Note that since the Fourier transform is a com-
plex transform with both negative frequencies as well as positive ones in the
frequency spectrum, the inverse transform with M components needs to con-
tain both positive and negative terms symmetric to the DC component in
the middle:

ẑ[m] =
M/2∑

k=−M/2

Z[k]ej2πmk/N (m = 0, · · · , N − 1)

As an example, the shape of Gumby is used to illustrate this idea, as
shown below. The coordinates of the N = 1, 157 boundary pixels are first
transformed to frequency domain, and then the shape is reconstructed by
inverse transform using different number of the total N frequency components
as shown in the figure. It can be seen that the reconstructed shape using less
than 5% of the total components (M = 50 out of N = 1, 157, 2nd to the right
in the bottom row of the figure) is virtually the same as the original shape,
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which can also be perfectedly reconstructed using all 1, 157 components (last
shape bottom row). This example clearly illustrates the fact that most of
the information (energy) representing the 2D shape is contained in a small
number of the low frequency components, while all remaining high frequency
components carry little information and can therefore be neglected.

(a) Gumby

(b) Reconstructed Gumby shapes

Figure 7: Reconstructed shapes using 1,2,3,4,5,6,7,8,20,50,100, and all 1,157
components
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Applications

As the optimal orthogonal transform, the KLT transform finds many appli-
cations in a wide variety of fields. Here we will just discuss some of such
applications.

Image compression

Assume a set of N images of size K = rows × columes are to be stored or
transmitted. The pixels of the smae position in all these images are used to
form a N-dimensional vector and there are in total K such vectors. Treating
these vectors as random vectors, we can find their mean vector m and covari-
ance matrix Σ, and the KLT can be carried out to transform these vectors
into a lower dimensional space of M << N dimensions.

Example:
A set of twenty face images are KLT transformed to obtaine the eigen-

images in the transform domain as shown in the figures:
It can be seen that the first few eigenfaces capture the most essential

features shared by all of the faces. For example, the first eigenface represents
a most generic face in the dark background, and the second eigenface repre-
sents the dark hair. The rest of the eigenfaces represent some other features
with progressively less importance.

The table below shows the percentage of energy contained in each com-
ponent:

components 1 2 3 4 5 6 7 8 9 10
percentage energy 48.5 11.6 6.1 4.6 3.8 3.7 2.6 2.5 1.9 1.9
accumulative energy 48.5 60.1 66.2 70.8 74.6 78.3 81.0 83.5 85.4 87.3

11 12 13 14 15 16 17 18 19 20
1.8 1.6 1.5 1.4 1.3 1.2 1.1 1.1 0.9 0.8
89. 90.7 92.2 93.6 94.9 96.1 97.2 98.2 99.2 100.0

Reconstructed faces using 95% of the total information are also shown in
the figure. The method of eigenfaces has also been used in facial recognition.
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(a) The original face images

(b) The eigenfaces

(c) Reconstructed faces

Figure 8: KLT transform of face images
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Remote sensing

In remote sensing, images of the surface of either the Earth or other planets
such as Mars are taken by satellites, for various studies (e.g., geology, geog-
raphy, etc.). The camera system on the satellite has a set of N sensors each
sensitive to a different wavelength band in the visible and infrared range of
the electromagnetic spectrum. Depending on the number of sensors N , the
data are referred to as either multi or hyper-spectral images. At each pixel
in the image, a set of N values each produced by one of the N sensors form
a spectral profile that characterizes the surface material.

As different types of materials on the ground surface usually have differ-
ent spectral profiles, one typical application of the multi- or hyper-spectral
data is to classify the pixels in the image into different classes each corre-
sponding to a certain surface material. When N is large, KLT can be used
to reduce the dimensionality without loss of essential information. Specifi-
cally, the N values associated with each pixel are considered as a vector in
the N-dimensional vector space, whose dimensionality will then be reduced
from N to M << N by the KLT transform. All classification can then be
subsequently carried out in this low dimensional space, thereby significantly
reducing the computional complexity.

Feature extraction for pattern recognition

In many applications, various objects, called patterns in the field of machine
learning, in the images (e.g., hand-written characters, human faces, etc.)
need to be classified. As the first step of this process, a set of features
pertaining to the patterns of interest need to be extracted. KLT can be used
for this purpose. Assum a set of images are taken, each containing one of
the ten numbers from 0 to 9 (or the face of one individual). Each image is
treated as a vector by concatenating all of its rows one after another. Next
the mean vector and covarance matrix of these vectors are obtained. Based on
the covariance matrix, the KLT is carried out to reduce the dimensionality
of the vectors from N to M << N . Alternatively, to better extract the
information pertaining to the difference between different classes of patterns,
the KLT can be based on a different matrix called between-class scatter
matrix, which represnts the separability of the classes. Specifically, we use
the eigenvectors corresponding to the M largest eiganvalues of the between-
class scatter matrix to form an M×N transform matrix. After the transform
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by this matrix, the classification is carried out in this M-dimensional space
with much reduced computational complexity.

Data visualization

In various data analysis applications, it is sometimes desirable to visualize
the data, for example, to find out how the data points are distributed in the
feature space. However, visualization is obviously impossible if the dimen-
sionality of the data is higher than three. In such cases the data points can
be projected from the original N-dimensional space to a M = 2 dimensional
space by the KLT transform based on the covariance matrix of the data
points, so that most of the information characterizing the spatial distribu-
tion of the data points is conserved. In some cases M = 3 dimensions can
be used if a 3D rotation can be simulated to show multiple 2D projections
of the 3D space from different vantage points.
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