
estimated NACFs �rX(h) and r̂X(h) are determined from Eqs. (19.4.78) and (19.4.88)

respectively. They are shown in Fig. 19.4.15 for f ¼ 0.8 and 20.8 for 10 lags.

Here also the NACFs for f ¼ 20.8 show oscillatory behavior. For the 10 lags

shown,there is very little difference between the two estimators �rX(h) and r̂X(h).

However, the discrepancy between the true NACF and the estimators for higher lags is

to be expected.

B 19.5 POWER SPECTRAL DENSITY

19.5.1 Continuous Time

In signal analysis power spectra are associated with Fourier transforms that transform

signals from the time domain to the frequency domain. The same concept is also

applicable to stationary random processes. The correlation functions represent stationary

processes in the time domain. We can transform them to the frequency domain by

taking their Fourier transforms. The power spectral density (psd) function SX (v) of a

real stationary random process X(t) is defined as the Fourier transform of the autocorrela-

tion function:

SX(v) ¼ FT½RX(t)� ¼

ð1

�1

RX(t)e
�jvtdt (19:5:1)

From the Fourier inversion theorem we can obtain the autocorrelation function from the

power spectral density:

RX(t) ¼ IFT½SX(v)� ¼
1

2p

ð1

�1

SX(v)e
jvtdv (19:5:2)

Equations (19.5.1) and (19.5.2) are called the Wiener–Khinchine theorem.

Since RX(0) ¼ E [X2(t)], the average power in the random process, we obtain the fol-

lowing from Eq. (19.5.2):

RX(0) ¼ E ½X2(t)� ¼
1

2p

ð1

�1

SX(v)dv ¼

ð1

�1

SX( f )df (19:5:3)

FIGURE 19.4.15
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Thus, SX ( f ) represents the average power per hertz, and hence the term power spectral

density. Since RX(t) is an even function, we can rewrite Eq. (19.5.1) as

SX(v) ¼

ð1

�1

RX(t)½cos(vt)þ j sin(vt)�dt ¼

ð1

�1

RX(t) cos(vt)dt (19:5:4)

and SX(v) is also an even function. Hence Eq. (19.5.2) can be rewritten as

RX(t) ¼
1

2p

ð1

�1

SX(v) cos(vt)dv (19:5:5)

The cross-spectral density (csd) SXY(v) of two real stationary random processes X(t)

and Y(t) is defined as the Fourier transform of the cross-correlation function, RXY(t)

SXY (v) ¼ FT½RXY (t)� ¼

ð1

�1

RXY (t)e
�jvtdt (19:5:6)

and the inverse Fourier transform of SXY(v) gives the cross-correlation function:

RXY (t) ¼ IFT½SXY (v)� ¼
1

2p

ð1

�1

SXY (v)e
jvtdv (19:5:7)

The cross-spectral density SXY(v) will be complex, in general, even when the random pro-

cesses X(t) and Y(t) are real.

The Fourier transforms can also be obtained from the tables in Appendix A.

Example 19.5.1 The power spectral density (psd) of the random binary wave of

Example 19.2.6 is to be determined. The autocorrelation of the random process X(t) is

given by

RX(t) ¼
A2 1�

jtj

T

� �
, jtj , T

0, otherwise

8
<

:

The psd SX(v) given by

SX(v) ¼

ð0

�T

A2 1þ
t

T

� 	
e�jvtdtþ

ðT

0

A2 1�
t

T

� 	
e�jvtdt

¼
A2

v2T
½(1� e jvT þ jvT )þ (1� e�jvT � jvT )�

¼ A2T
sin(vT=2)

vT=2

� �2

is shown in Fig. 19.5.1. As we can see from figure, the psd is an even function.

Example 19.5.2 We will find the psd from the autocorrelation RX(t) ¼
1
4
½1þ e�2ljtj� of

the random telegraph wave given in Example 19.2.7. Taking the Fourier transform, the psd
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is given by

SX(v) ¼
1

4

ð1

�1

e�jvtdtþ
1

4

ð0

�1

e2lte�jvtdtþ
1

4

ð1

0

e�2lte�jvtdt

¼
1

4
2pd(v)þ

4l

4l2 þ v2

� �
¼

p

2
d(v)þ

l

4l2 þ v2

The impulse function (p=2)d(v) represents the direct-current (dc) value of RX(t) ¼
1
4
. The

psd is shown in Fig. 19.5.2 for l ¼ 1.

Example 19.5.3 We will find the psd from the autocorrelation RX(t) ¼ e�2ljtj cos(v0t)

of Example 19.2.8. We can take the Fourier transform of RX(t) directly, but it is easier to

FIGURE 19.5.1

FIGURE 19.5.2
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evaluate the FT by using the frequency convolution property of the FT as follows:

FT½e�2ljtj ¼
4l2

4l2 þ v2
and FT½cos(v0t)� ¼ p½d(vþ v0)þ d(v� v0)�

Using the frequency convolution property x(t)y(t) , (1=2p)X(v) � Y(v), we have

e�2ljtj cos(v0t) ()
1

2p

4l2

4l2 þ v2
� p½d(vþ v0)þ d(v� v0)�

or

SX(v) ¼ 2l
1

4l2 þ (vþ v0)
2
þ

1

4l2 þ (v� v0)
2

� �

and simplifying, we obtain

SX(v) ¼
4l(v2 þ v2

0 þ 4l2)

v4 � 2(v2
0 � 4l2)v2 þ (v2

0 þ 4l2)2

With l ¼ 1 and v0 ¼ 2p, the psd becomes

SX(v) ¼
4(v2 þ 4p2 þ 4l2)

v4 � 8(p2 � 1)v2 þ 16(p2 þ 1)2

The psd SX(v) is shown in Fig. 19.5.3.

Example 19.5.4 (Bandlimited Process) The autocorrelation function RX(t) ¼

sin(v0t)=pt of a stationary random process X(t) is shown in Fig. 19.5.4 for v0 ¼ 2p.

We have to find the psd SX(v).

From item 2 in the FT table, the Fourier transform of RX(t) can be obtained as follows:

sin(v0t)

pt
() pv0

(v), hence SX(v) ¼ pv0
(v)

The psd SX(v) is shown in Fig. 19.5.5 for v0 ¼ 2p.

The random process that has a psd as in Fig. 19.5.5 is called a bandlimited signal since

the frequency spectrum exists only between –2p and 2p.

FIGURE 19.5.3
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Example 19.5.5 (Bandlimited Process) The autocorrelation function RX(t)

RX(t) ¼
sin½v0(t� t0)�

p(t� t0)
þ
sin½v0(tþ t0)�

p(tþ t0)

of a bandlimited random process X(t) is shown in Fig. 19.5.6 for v0 ¼ 2p and t0 ¼ 3.

FIGURE 19.5.4

FIGURE 19.5.5

FIGURE 19.5.6
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Since sin(v0t)=pt , pv0
(v) using the time-shifting property x(t+ t0) , X(v)e+jvt0

of the FT, we have

sin½v0(t� t0)�

p(t� t0)
() pv0

(v)e�jvt0 ,
sin½v0(tþ t0)�

p(tþ t0)
() pv0

(v)e jvt0

or

sin½v0(t� t0)�

p(t� t0)
þ
sin½v0(tþ t0)�

p(tþ t0)
() pv0

(v)½e jvt0 þ e�jvt0 �

and

SX(v) ¼ 2pv0
(v) cos(vt0)

The psd is shown in Fig. 19.5.7 for v0 ¼ 2p and t0 ¼ 3.

Example 19.5.6 (Bandpass Process) The autocorrelation function RX(t)

RX(t) ¼
2 sin(v0t)

pt
cos(vct)

of a bandpass random process X(t) is shown in Fig. 19.5.8 for v0 ¼ 2p and vc ¼ 16p.

We will find the psd using the frequency convolution property of the FT:

xðtÞyðtÞ ()
1

2p
XðvÞ �YðvÞ

Since 2 sin(v0t)=pt , 2pv0
(v) and cos(vct) , p½d(vþ vc)þ d(v� vcÞ�, we have

2 sin(v0t)

pt
cos(vct) ()

1

2p
2pv0

(v) � p½d(vþ vc)þ d(v� vc)�

FIGURE 19.5.7
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and the psd

SX(v) ¼ pv0
(vþ vc)þ pv0

(v� vc)

The function SX(v) is shown in Fig. 19.5.9 for v0 ¼ 2p and vc ¼ 16p.

Example 19.5.7 (White Noise) A white-noise process has the autocorrelation function

RX(t) ¼ s2
Xd(t) given in Eq. (19.2.17). The psd of white noise is given by

SX(v) ¼ s2
X , �1 , v , 1

and has a flat spectrum. Since the process has all frequencies with equal power, it is

called “white noise,” analogously to white light. It has infinite energy since

RX(0) ¼ (1=2p)
Ð1
�1

s2
Xdv ¼ 1, and hence it is an idealization.

Example 19.5.8 The cross-correlation function of two random processes X(t) ¼

A cos(v0t)þ B sin(v0t) and Y(t) ¼ �A sin(v0t)þ B cos(v0t) in Example 19.2.9 is

RXY (t) ¼ �s2 sin(v0t), E[A2] ¼ E[B2] ¼ s2. We will find the cross-spectral density

SXY(v).

Taking FT of �s2 sin(v0t), from tables, we have

SXY (v) ¼ �jps2½d(vþ v0)� d(v� v0)�

and this is shown in Fig. 19.5.10.

Note that SXY(v) is neither even nor real.

FIGURE 19.5.8

FIGURE 19.5.9
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Example 19.5.9 The cross-spectral density is to be found for the cross-correlation

function RXY(t) derived in Example 19.2.10:

RXY (t) ¼
1

2
þ

4

15
e�(t=2) �

1

6
e�2t, t . 0

1

10
e2t, t � 0

8
><

>:

Taking FT of each term in RXY(t), we have

4

15
e(t=2) ()

4

15

1

1=2þ jv
;

1

6
e�2t ()

1

6

1

2þ jv

1

2
() pd(v);

1

10
e2t ()

1

10

1

2� jv

The cross-spectral density SXY(v) is obtained by adding the FT terms shown above:

SXY (v) ¼ pd(v)þ
4

15

1
1
2
þ jv

þ
1

6

1

2þ jv
þ

1

10

1

2� jv
¼

1

3

8þ 2v2 þ 3jv

(1þ 2jv)(4þ v2)
þ pdðvÞ

The cross-spectral density SXY(v) is complex and possesses no symmetry, unlike the

power spectral density. The constant term 1
2
in RXY(t) gives rise to the impulse function

in the frequency domain. The amplitude jSXY (v)j and the phase argfSXY(v)g spectra are

graphed in Fig. 19.5.11.

Properties of Power Spectral Densities of Stationary Random Processes

1. SX(v) is a real function. In general, the Fourier transform X(v) of any function X(t)

will be complex. However, the ACF RX(t) is an even function and satisfies the

relation RX(t) ¼ RX(2t). Hence, from the definition of psd, we obtain

SX(v) ¼

ð1

�1

RX(t)e
�jvtdt ¼

ð1

�1

RX(t)½cos(vt)þ j sin(vt)�dt

¼

ð1

�1

RX(t) cos(vt)dt

since the imaginary part
Ð1
�1

RX(t) j sin(vt)dt ¼ 0 because an even function mul-

tiplying an odd function results in an odd function and the integral of an odd func-

tion over (21,1) is zero.

2. From property 1 the psd SX(v) is an even function and, hence it is a function of v
2.

As a consequence SX(v) ¼ SX(2v). (19.5.8)

3. SX(v) � 0: The psd is a nonnegative function of v. (19.5.9)

FIGURE 19.5.10
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4. From the Fourier transform properties:

RX(0) ¼
1

2p

ð1

�1

SX(v)dv ¼

ð1

�1

SX( f )df ¼ E ½X2(t)�

SX(0) ¼

ð1

�1

RX(t)dt

(19:5:10)

5. If Z(t) ¼ X(t)þ Y(t), then from Eq. (19.2.30), we have

RZ(t) ¼ RX(t)þ RY (t)þ RXY (t)þ RYX(t)

SZ(v) ¼ SX(v)þ SY (v)þ SXY (v)þ SYX(v)
(19:5:11)

If X(t) and Y(t) are orthogonal, then Eq. (19.5.11) reduces to

SZ(v) ¼ SX(v)þ SY (v)

Alternate Form for Power Spectral Density

The psd can also be obtained directly from the stationary random process X(t). We

will truncate X(t) in the interval (2T, T ) and define the random process XT(t) as

XT (t) ¼
X(t), �T � t � T

0, otherwise

�
(19:5:12)

The FT XT(v) of XT(t), given by XT (v) ¼
Ð T
�T

X(t)e�jvtdt, is a random variable. The quan-

tity ST(v), defined by

ST (v) ¼
1

2T

ðT

�T

X(t)e�jvtdt











2

¼
jXT (v)j

2

2T
¼

XT (v)X
�
T (v)

2T
(19:5:13)

is called the periodogram. The periodogram represents the power of the sample function

X(t) at the frequency v. Equation (19.5.13) can be expanded as follows:

ST (v) ¼
1

2T

ðT

�T

ðT

�T

X(t)X(s)e�jv(t�s)dt ds (19:5:14)

We can make the transformation t ¼ t2 s and u ¼ s in Eq. (19.5.14) and perform the inte-

gration in the (t, u) plane. The Jacobian k J k of the transformation from Eq. (19.3.5) is 1,

FIGURE 19.5.11
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and Eq. (19.5.14) can be transformed as follows:

ST (v) ¼
1

2T

ð ð
X(u)X(uþ jtj)du

� �
e�jvtdt (19:5:15)

We can obtain the limits of integration from Fig. 19.3.1 and write Eq. (19.5.15) as

ST (v) ¼

ð2T

0

1

2T

ðT

�Tþt

X(u)X(uþ t)du

� �
e�jvtdt

þ

ð0

�2T

1

2T

ðT�jtj

�T

X(u)X(uþ t)du

� �
e�jvtdt

¼

ð2T

0

R̂X(t)e
�jvtdtþ

ð0

�2T

R̂X(t)e
�jvtdt

¼

ð2T

�2T

R̂X(t)e
�jvtdt (19:5:16)

where we have used the definition for R̂X(t) as in Eq. (19.4.34a). Using Eq. (19.4.34b), the

expected value of ST(v) can be written as

E ST (v)½ � ¼

ð2T

�2T

E R̂X(t)
h i

e�jvtdt ¼

ð2T

�2T

RX(t) 1�
jtj

2T

� �
e�jvtdt (19:5:17)

Taking the limit of E ST (v)½ � in Eq. (19.5.17) as T ! 1, we have

lim
T!1

E ST (v)½ � ¼ lim
T!1

ð1

�1

RX(t) 1�
jtj

2T

� �
e�jvtdt

� �

¼ lim
T!1

FT RX(t) 1�
jtj

2T

� �� �
(19:5:18)

Using the frequency convolution property of the FT, we obtain

x(t)y(t) ()
1

2p
X(v) � Y(v) ¼

1

2p

ð1

�1

X(p)Y(v� p)dp

and with RX(t) , SX(v) and

1�
jtj

2T

� �
, 2T

sin2 vT

(vT )2

Eq. (19.5.18) can be rewritten as follows:

lim
T!1

E ST (v)½ � ¼ lim
T!1

FT RX(t) 1�
jtj

2T

� �� �

¼ lim
T!1

ð1

�1

SX(p)T
sin2(v� p)T

p (v� p)T½ �
2
dp (19:5:19)
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From Ref. 36,

lim
T!1

T
sin2 (vT )

p(vT )2
�! d(v) and lim

T!1
T
sin2 (v� p)T

p (v� p)T½ �
2
¼ d(v� p)

and substituting this result in Eq. (19.5.19), we have

lim
T!1

E ST (v)½ � ¼

ð1

�1

SX(p)d(v� p)dp ¼ SX(v) (19:5:20)

Thus, the expected value of the periodogram as T ! 1 yields the psd SX(v).

Estimation of Power Spectral Density

We have defined an estimator R̂X(t) for the autocorrelation function in Eq. (19.4.34a).

It is intuitive to express the estimator ŜX(v) for the psd as the FT½R̂X(t)� as follows:

ŜXT ðvÞ ¼

ðT

�T

R̂XðtÞe
�jvtdt : ŜXðvÞ ¼ lim

T!1
ŜXT ðvÞ (19:5:21)

This equation corresponds to Eq. (19.5.16). The periodogram is an asymptotically

unbiased estimator for SX(v) since limT!1 E½ŜX(v)� ¼ SX(v). We may be tempted to con-

clude that since R̂X(t) is a consistent estimator of RX(t), the Fourier transform of R̂X(t) will

also be a consistent estimator of SX(v). This is not true because ŜX(v) fails to converge to

SX(v) for T ! 1. We will show heuristically that var½ŜXT
(v)� does not approach 0 as

T ! 1. From Eq. (19.5.14) the second moment E ½ŜXT
(v)�2 is given by

E ŜXT
(vÞ

h i2
¼

1

4T2

ðT

�T

ðT

�T

ðT

�T

ðT

�T

E ½X(t)X(s)X(v)X(u)�

� e�jv(t�sþv�u)dt ds dv du (19:5:22)

If the process X(t) is Gaussian, then from Eq. (11.6.8) or Example 19.3.4, we obtain

E ½X(t)X(s)X(v)X(u)� ¼ RX(t � s)RX(v� u)þ RX(t � v)RX(s� u)

þ RX(t � u)RX(s� v) (19:5:23)

Substituting Eq. (19.5.23) into Eq. (19.5.22), we have

E ½ŜXT
(v)�2 ¼

1

4T2

ðT

�T

ðT

�T

ðT

�T

ðT

�T

½RX(t � s)RX(v� u)

þ RX(t � u)RX(s� u)þ RX(t � u)RX(s� v)�

� e�jv(t�sþv�u)dt ds dv du (19:5:24)
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Rearranging Eq. (19.5.24), we obtain

E ½ŜXT
(v)�2 ¼

1

2T

ðT

�T

ðT

�T

RX(t � s)e�jv(t�s)dt ds

�
1

2T

ðT

�T

ðT

�T

RX(v� u)e�jv(v�u)dv du

þ
1

2T

ðT

�T

ðT

�T

RX(t � u)e�jv(t�u)dt du

�
1

2T

ðT

�T

ðT

�T

RX(v� s)e�jv(v�s)dv ds

þ
1

2T

ðT

�T

ðT

�T

RX(t � v)e�jv(tþv)dt dv

�
1

2T

ðT

�T

ðT

�T

RX(s� u)e jv(sþu)ds du (19:5:25)

Using Eq. (19.5.21), we can simplify Eq. (19.5.25) as follows:

E ½ŜXT
(v)�2 ¼ 2{E ½ŜXT

(v)�}2 þ
1

4T2

ðT

�T

ðT

�T

RX(t � v)e�jv(tþv)dt dv











2

( )
(19:5:26)

As T ! 1, the second term on the righthand side of Eq. (19.5.26) tends to zero. Hence

E ½ŜXT
(v)�2 � 2{E ½ŜXT

(v)�}2, v = 0

Subtracting {E ½ŜXT
(v)�}2 from both sides of this equation, we obtain

E ½ŜXT
(v)�2 � {E ½ŜXT

(v)�}2 � {E ½ŜXT
(v)�}2, v = 0

or

var½ŜXT
(v)� � {E ½ŜXT

(v)�}2, v = 0 (19:5:27)

Substitution of Eq. (19.5.20) limT!1 E ½SXT
(v)� ¼ SX(v), in Eq. (19.5.27) results in

lim
T!1

var½ŜXT
(v)� � S2X(v), v = 0 (19:5:28)

Thus, as T ! 1, var½ŜXT
(v)� does not go to zero but is approximately equal to the psd

S2X(v), and hence ŜX(v) is not a consistent estimator. To make ŜX(v) consistent, spectral

windowing [25] is employed. However, with spectral windowing the asymptotically

unbiased nature of the estimator is lost.
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19.5.2 Discrete Time

As in Eq. (19.5.1), we can also define power spectral density for a discrete-time

stationary ergodic random process fXi ¼ X(ti), i ¼ 0, +1, . . .g, where the intervals are

equally spaced. The autocorrelation function RX(h) has been defined in Eq. (19.2.34).

The psd SX(v) is the Fourier transform of RX(h) and is given by

SX(v) ¼ FT½RX(h)� ¼
X1

h¼�1

RX(h)e
�jvh (19:5:29)

Since the discrete-time Fourier transforms are periodic, the psd for discrete-time random

process Xi as given by Eq. (19.5.29) is periodic with period 2p.

The inverse FT of SX(v) is the autocorrelation function RX(h), given by

RX(h) ¼ IFT½SX(v)� ¼
1

2p

ðp

�p

SX(v)e
jvhdv (19:5:30)

Example 19.5.10 (Discrete Analog of Example 19.5.1) The autocorrelation RX(h) of

the discrete-time process fXig corresponding to the continuous-time process X(t) of

Example 19.5.1 is given by

RX(h) ¼
A2 1�

jhj

n

� �
, jhj , n

0, otherwise

8
<

:

and is shown in Fig. 19.5.12 for A ¼ 1 and n ¼ 10.

The psd is obtained from Eq. (19.5.29) for finite n as

SX(v) ¼
Xn�1

h¼�(n�1)

A2 1�
jhj

n

� �
e�jvh

¼ A2 1þ
X�1

h¼�(n�1)

1þ
h

n

� �
e�jvh þ

Xn�1

h¼1

1�
h

n

� �
e�jvh

" #

¼ A2 1þ
Xn�1

h¼1

1�
h

n

� �
e jvh þ e�jvh
� �

" #
¼ A2 1þ 2

Xn�1

h¼1

1�
h

n

� �
cos(vh)

" #

¼
A2

n

1� cos(nv)

1� cos(v)

� �
¼

A2

n

sin(nv=2)

sin(v=2)

� �2

and

SX(0) ¼
A2n2

n
¼ A2n

The psd is graphed in Fig. 19.5.13 for A ¼ 1 and n ¼ 5 for values of v between –2p and

2p, and the periodic nature of the psd is evident.

Figure 19.5.13 is similar to Fig. 19.5.1 except for the periodicity.

Example 19.5.11 (Discrete Analog of Example 19.5.2) The discrete AC function RX(h)

corresponding to Example 19.5.2 is given by

RX(h) ¼ s2
X 1þ e�2ljhj
� �

, �1 , h , 1
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where 1 is a discrete unity function. The psd is determined as follows:

SX(v) ¼
X1

h¼�1

s2
X 1þ e�2ljhj
� �

e�jvh

¼ s2
X

X1

h¼�1

1 : e�jvh þ
X�1

h¼�1

e2lhe�jvh þ
X1

h¼1

e�2lhe�jvh

" #

¼ s2
X

X1

h¼�1

2pd(v� 2ph)þ 1þ
X1

h¼1

e�h(2lþjv) þ e�h(2l�jv)
� �

( )

¼ s2
X

X1

k¼�1

2pd(v� 2ph)þ
1� e�4l

1þ e�4l � 2e�2l cos(v)

( )

where d(v) is the Dirac delta function. The delta function train corresponds the discrete

constant s2
X ¼ 1

4
in the frequency domain. The plot of SX(v) is shown in Fig. 19.5.14

FIGURE 19.5.12

FIGURE 19.5.13
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with s2
X ¼ 1

5
and l ¼ 1

5
. The graph is very similar to Fig. 19.5.2 except that it is periodic

with period equal to 2p.

Alternate Form for Power Spectral Density

The discrete psd can also be obtained from the stationary discrete-time random

process fXkg. We will truncate this process in the interval (0, N – 1) and write

XkN ¼
Xk, 0 � k � N � 1

0, otherwise

�
(19:5:31)

The discrete-time FT of the sequence fXkNg is given by XN(v) ¼
PN�1

k¼0 Xke
�jvk, which is a

random variable. We now define the quantity SN(v) as

SN(v) ¼
1

N

XN�1

k¼0

Xke
�jvk















2

¼
jXN(v)j

2

N
¼

XN(v)X
�
N(v)

N
(19:5:32)

which is the periodogram for the discrete random process. Equation (19.5.32) can be

expanded as follows:

SN(v) ¼
1

N

XN�1

m¼0

XN�1

k¼0

XkXme
�jv(k�m) (19:5:33)

Substituting h ¼ (k2m) and j ¼ m in Eq. (19.5.33), the summation is carried out along

the diagonal with limits found by referring to Fig. 19.4.1, resulting in

SN(v) ¼
XN�1

h¼0

1

N

X(N�1)=2

m¼�½(N�1)=2�þh

XmXmþh

" #
e�jvh

þ
X0

h¼�(N�1)

1

N

X½(N�1)=2��jhj

m¼�½(N�1)=2�

XmXmþh

" #
e�jvh

(19:5:34)

The estimated autocorrelation R̂X(h) from Eq. (19.4.76) is

R̂X(h) ¼
1

N

XN�h�1

i¼0

XiXiþh (19:5:35)

FIGURE 19.5.14
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and substituting Eq. (19.5.35) in Eq. (19.5.34), we obtain

SN(v) ¼
XN�1

h¼0

R̂X(h)e
�jvh þ

X0

h¼�(N�1)

R̂X(h)e
�jvh

¼
XN�1

h¼�(N�1)

R̂X(h)e
�jvh (19:5:36)

Taking expectations and substituting Eq. (19.4.76b) in Eq. (19.5.36), we obtain

E ½SN(v)� ¼
XN�1

h¼�(N�1)

E ½R̂X(h)�e
�jvh ¼

XN�1

h¼�(N�1)

1�
jhj

N

� �
RX(h)e

�jvh (19:5:37)

Taking the limit as of Eq. (19.5.37) as N ! 1, we have

lim
N!1

E ½SN(v)� ¼ lim
N!1

XN�1

h¼�(N�1)

1�
jhj

N

� �
RX(h)e

�jvh

¼ lim
N!1

DTFT RX(h) 1�
jhj

N

� �� �
(19:5:38)

We use the frequency convolution property of the DTFT

xnyn ()
1

2p
X(v) � Y(v) ¼

1

2p

ðp

�p

X(p)Y(v� p)dp

with RX(h) , SX(v) and from Example 19.5.10

1�
jhj

N

� �
()

1

N

sin(vN=2)

sin(v=2)

� �2

Eq. (19.5.38) can be written as

lim
N!1

E ½SN(v)� ¼ lim
N!1

DTFT RX(h) 1�
jhj

N

� �� �

¼ lim
N!1

1

2p

ðp

�p

SX(p)
1

N

sin½(v� p)N=2�

sin½(v� p)=2�

� �
dp (19:5:39)

Using the result

lim
N!1

1

N

sin(vN=2)

sin(v=2)

� �
�!

X1

k¼�1

d(v� 2kp)

in Eq. (19.5.39), we obtain

lim
N!1

E ½SN(v)� ¼ lim
N!1

1

2p

ðp

�p

SX(p)d(v� p)dp ¼ SX(v) (19:5:40)
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Thus, the periodogram SN(v) is an asymptotically unbiased estimator of the psd SX(v). The

variance of SN(v) can be obtained by using techniques similar to the continuous case, and

we can show a result similar to Eq. (19.5.28):

lim
N!1

var½SN(v)� � S2X(v), v = 0 (19:5:41)

This equation shows that the estimator SN(v) is not a consistent estimator of SX(v).

Example 19.5.12 To check the validity of Eq. (19.5.41), a computer simulation of dis-

crete white noise of zero mean and unit variance was performed. The power spectral

density of the white noise is the variance, or SX(v) ¼ sX
2 ¼ 1. The number 2m of data

points with m ¼ 7,9,10,11 were chosen so that they could fit into the discrete Fourier

transform algorithm. The psd S(v) was estimated for N ¼ 128, 512, 1024, and 2048

points using Eq. (19.5.32). Because of the symmetry about N/2, the estimates S128(v),

FIGURE 19.5.15

TABLE 19.5.1.

# PSD N Mean Variance

1 SX(v) — 1 0

2 S128(v) 128 1.0045 0.9214

3 S512(v) 512 0.9944 0.8908

4 S1024(v) 1024 0.9971 0.9941

5 S2048(v) 2048 0.9987 1.0240
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S512(v), S1024(v), and S2048(v) are graphed for only half the number of data points in Figs.

19.5.15a–19.5.15d.

The estimated psd’s and their variances are shown in Table 19.5.1.

The table shows that the estimator SN(v) is unbiased because the means for all N are

nearly equal to 1 as expected. However, the variances of the psd for all N are nearly the

same, equaling the derived value sX
4 ¼ 1, which is the expected result according to

Eq. (19.5.41). Thus, the simulation of discrete white noise confirms the desired theoretical

result.
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