CHAPTER 2

The Poisson Process

2.1 THE PoissoN PROCESsS

A stochastic process {N(¢), t = 0} is said to be a counting process if N(t)
represents the total number of ‘events’ that have occurred up to time ¢. Hence,
a counting process N(¢) must satisfy

@ N=0
(ii) N(¢) is integer valued
(ii) If s < ¢, then N(s) = N(2).
(iv) Fors <¢, N(t) — N(s) equals the number of events that have occurred
in the interval (s, ¢]

A counting process is said to possess independent increments if the numbers
of events that occur in disjoint time intervals are independent. For example,
this means that the number of events that have occurred by time ¢ (that is,
N(?)) must be independent of the number of events occurring between times
t and t + s (that is, N(¢ + s) — N(¢))

A counting process is said to possess stationary increments if the distribution
of the number of events that occur in any interval of time depends only on
the length of the time interval. In other words, the process has stationary
increments if the number of events in the interval (¢, + s, #; + 5] (that is,
N(t; + s) — N(t, + 5)) has the same distribution as the number of events in
the interval (¢, #;] (that is, N(¢;) — N(z))) for all ¢, < t,, and s > 0.

One of the most important types of counting processes is the Poisson
process, which is defined as follows.

I
Definition 2.1.1
The counting process {N(t). t = 0} is said to be a Poisson process having rate A, A > 0, if

(i) NO) =0
(ii) The process has independent increments
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60 THE POISSON PROCESS

(iii) The number of events in any interval of length ¢ is Poisson distributed with
mean Af That is, for all s, r = 0,

P{N(t+s)—N(s)=n}=e‘“%[!):, n=20,1,
——

Note that it follows from condition (iii) that a Poisson process has stationary
increments and also that

E[N(D)] = A,

which explains why A is called the rate of the process

In order to determine if an arbitrary counting process is actually a Poisson
process, we must show that conditions (i), (ii), and (iii) are satisfied. Condition
(i), which simply states that the counting of events begins at time ¢ = 0, and
condition (ii) can usually be directly verified from our knowledge of the
process. However, it is not at all clear how we would determine that condition
(iii) is satisfied, and for this reason an equivalent definition of a Poisson process
would be useful.

As a prelude to giving a second definition of a Poisson process, we shall
define the concept of a function f being o(h).

]
Definttlon

The function f is said to be o(h) if

. f(h) _
om0

We are now in a position to give an alternative definition of a Poisson
process.

. |
Definition 2.1.2

The counting process {N(f), ¢t = 0} is said to be a Poisson process with rate A, A > 0, if

i) N(O) =0

(i) The process has stationary and independent increments.
(iiiy P{N(k) = 1} = Ah + o(h)

(iv) P{N(h) = 2} = o(h)
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S
THEOREM 2.1.1

Definitions 2 I I and 2 I 2 are equivalent

Proof We first show that Definition 2 1 2 implies Definition 211 To do this let
P,(t) = P{N(t) = n}

We derive a differential equation for Py(t) in the following manner

Pyt +h)=P{N(t+ h) =0}
= P{N(t) =0, N(t + h) — N(t) = 0}
= P{N(t) = O}P{N(t + h) — N(t) = 0}
= Py(t)[1 — A1 + o(h)],

where the final two equations follow from Assumption (ii) and the fact that (iii) and
(iv) imply that P{N(h) = 0} = 1 — Ah + o(h) Hence,

Pyt + h) = Py(t) _

o(h)
7 ;

“'/\Po(t) + T

Letting £ — 0 yields
Pi(t) = —APy(t)
or

Po(t)
Pot) 7

which implies, by integration,
log Po(t) = — Mt + ¢
or
Py(t) = Ke™.
Since Py(0) = P{N(Q) = 0} = 1, we arrive at
(211) Po(t) = e
Similarly, forn = 1,

P,(t+h)=P{N(t+h)=n}
= P{N({t)=n,N(t +h) — N(t) = 0}
+ P{N(t)=n—1,N(t+ h) = N(t) = 1}
+ P{N(t+h)=n,N{t+h)—-N@t) =2}
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However, by (iv), the last term in the above is o(k), hence, by using (ii), we obtain

P,(t+ h) = Py()Py(h) + Py () Py(R) +0(h)
= (1= AR)P,(t) + ARP,_,(t) + o(h)

Thus,

Bl M = B0 - ap 1) + APty + 20

Letting h — 0,
P(t) = =AP,(1) + AP,_,(1),
or, equivalently,
eN[P(6) + AP, ()] = Ae*P,_ (1)
Hence,
(212) £ (&P, (1)) = Ae*P,,(1)
Now by (21 1) we have when n = 1
4 (ep,(1)) = A
or
P.(t) = (At + c)e™¥,
which, since P.(0) = 0, yields

Pi(t) = Ate™

To show that P (f) = e ¥(Ar)"/n', we use mathematical induction and hence first
assume it for n — 1 Then by (212),

d . _ A
2 PO0) = L0
implying that
eArPn(t) — (AI)H + c,

n!'
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or, since P,(0) = P{N(0) = n} = 0, .

— o-n (A"
P,,(l)—e AT

Thus Definition 2 1 2 implies Definition 211 We will leave it for the reader to prove

the reverse
-]

Remark The rcsult that N(¢) has a Poisson distnibution is a consequence of
the Poisson approximation to the binomial distribution To sce this subdivide
the interval [0, ¢] into k equal parts where & is very large (Figure 2 1 1) First
we note that the probability of having 2 or more events in any subinterval
goes to 0 as k — e This follows from

P{2 or more events in any subinterval}

=
4 1

P{2 or more events in the ith subinterval}

i =

I

ko(tlk)

o(tlk)

=t
t/k

— () ask — oo,

Hence, N(¢) will (with a probability going to 1) just equal the number of
subintervals in which an event occurs. However, by stationary and independent
increments this number will have a binomial distribution with parameters k&
and p = At/k + o(t/k) Hence by the Poisson approximation to the binomial
we sce by letting & approach oo that N(¢) will have a Poisson distribution with
mean equal to

; t AV : o(tlk) | _
}‘Iﬂk["kw(k)]—‘”l‘ﬂ[’ tk ]—""

o
x|e= =
S

Figure 2.1.1
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2.2 INTERARRIVAL AND WAITING

TiME DISTRIBUTIONS

Consider a Poisson process, and let X, denote the time of the first event

Further, for n = 1, let X, denote the time between the (n — 1)st and the nth

event. The sequence {X,, n = 1} is called the sequence of interarrival times
We shall now determine the distribution of the X, To do so we first note

that the event {X, > t} takes place if, and only if, no events of the Poisson
process occur in the interval [0, ¢], and thus

P{X, >t} = PIN(t) =0} = e

Hence, X, has an exponential distribution with mean 1/A To obtain the
distribution of X; condition on X; This gives -

P{X,>t|X,=s}= P{0eventsin (s,s + t]| X; = s}
= P{0 eventsin (s,s + t]} (by independent increments)
=e™M (by stationary increments)
Therefore, from the above we conclude that X, is also an exponential random

variable with mean 1/A, and furthermore, that X, is independent of X,. Re-
peating the same argument yields the following

PROPOSITION 2.2.1

X.,n=1,2, areindependent identically distributed exponential random variables
having mean 1/A
— E——

-~

Remark The proposition should not surprise us. The assumption of station-
ary and independent increments is equivalent to asserting that, at any point
in time, the process probabilistically restarts itself That is, the process from
any point on is independent of all that has previously occurred (by independent
increments), and also has the same distribution as the original process (by
stationary increments) In other words, the process has no memory, and hence

exponential interarrival times are to be expected.

Another quantity of interest is S,, the arrival time of the nth event, also
called the waiting time until the nth event Since

S,,=§n:X,, n=z=l1,
=1
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it is easy to show, using moment generating functions, that Proposition 2.2.1
implies that S, has a gamma distribution with parameters #n and A. That is,
its probability density is

» (A)™! -
f(t) = Ae (n_—-T)_" t=0.

The above could also have been derived by noting that the nth event occurs
prior or at time ¢ if, and only if, the number of events occurring by time ¢ is
at least n. That is,

NO)zne S, =t
Hence,
P{S, =t} = P{N(t) = n}

_3 ul)

£ j' k4
which upon differentiation yields that the density function of S, is
o o AD S (A
= — > Ae ’“(—,—+ Ag ™M ———
FO= =2 2™+ 2 A

B _'M (/\t)n—l
= A

Remark Another way of obtaining the density of S, is to use the independent
increment assumption as follows

P{it<S,<t+dt} = P{N(t) =n—1,1eventin(¢,t + dt)} + o(dt)
= P{N(t) =n — 1} P{l eventin (¢, + dt)} + o(d?)

e"l\!(/\t)ﬂ"l
=" adr +
- 1)1 Adt + o(dt)
which yields, upon dividing by d(¢) and then letting it approach 0, that
B /\e—,\x(/\t)n—l
fs,,(t) - (n _ 1)!

Proposition 2.2.1 also gives us another way of defining a Poisson process.
For suppose that we start out with a sequence {X,, n = 1} of independent
identically distributed exponential random variables each having mean 1/A.
Now let us define a counting process by saying that the nth event of this



