Lesson 4

Poisson Processes

This Lesson is devoted entirely to an important class of continuous-time
Markov chains, the Poisson processes. This Lesson also serves as an intro-
duction to continuous-time Markov chains where the general theory will be
treated in Lesson 5.

4.1 Motivation and Modeling

Consider a sequence of events which occur at random instants, say 17,75, - - -,
Ty, - -. For example the arrival of customers for service; the occurrence of
breakdowns, accidents, earthquakes; the arrivals of particles registered by
a Geiger counter.

The sequence (T, n > 1) is called a point process. In the following we
will suppose that 0 < 71 < T3 < -+ < T,, < --- and limy10 Ty = 00 with
probability one. These properties mean that the registration of the events
begins at time 0, that two events cannot occur at the same time and that
the observed phenomena take place during a long period. Note that 0 is
not an event time arrival. The reason is that it is natural to suppose that
the distribution of 7}, is continuous.

Now a convenient method for describing (77,) is to consider the associ-
ated counting process (N, t > 0) where N, represents the number of events
that have occured in the time interval [0, ¢].

(N¢y t > 0) and (T,,n = 1,2,---) contain the same information since
with probability one

Ny=sup{n:n=0,1,2,--,7, <t},t >0 (4.1)

with the conventional notation Ty = 0; whereas
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T, =inf{t:t >0, N;>n};n=0,1,---. (4.2)

These relations are visible on figure 1 which shows a typical sample path
for the Counting Process (NVy).
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Figure 1. A typical sample path of a Counting Process

The following relations between (N;) and (7,) are also of interest

{N:=n}={T, <t <Tphy}, (4.3)
{N: > n} ={Tn <t}, (4.4)
{s< T, <t} ={N; <n< N} (4.5)

On the other hand if the sources which generate the events are indepen-
dent, then it is natural to suppose that the respective numbers of events
which occur on nonoverlapping time intervals are stochastically indepen-
dent.

Furthermore, if the sources keep the same intensity during the time then
the distribution of Nyyp — Ny4p does not depend on h.
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4.2 Axioms of Poisson Processes

The above considerations lead to the following axioms
Ap: 0<Th <Tp<---<Ty <--- and lim, o T, = 0o with probability
one.

A;: (Nt > 0) is an independent increments process, i.e., for any k > 2
and 0 <ty < t; < --- <ty the random variables Ny, — N;,, Ny, — Ny, - -+,
N, — Ny, _, are independent.

Ag: (Ng, t > 0) is a stationary increments process, i.e., for any h > 0,
0 < s<t, Neyh — Ny and Ny — N, have the same distribution.

If these axioms are valid we have the following astonishing result:

Theorem 4.1 If A;, A; and A; hold, then there erists a strictly positive
constant A such that, for each 0 < s <,
- (At = 8))F
4P(Nt"Ns=k)=6 '—-k,—; k=0,1,2,---. (4.6)

Relation(4.6) means that Ny — N, follows the Poisson distribution with
parameter A(t — s) (we use the notation P(a) to denote a Poisson distri-
bution with parameter «); A is called the intensity of the Poisson process

(V). :
Note that (4.6) together with A; and Ay determine completely the dis-
tribution of (N, ¢ > 0) since Ng = Oa.s. and since if 0 < ¢; < --- < ¢

P(Nt1 - nl;"'yNtk =nk)
= P(Nt1 = nlyth —Nt1 =n3 — nla"')Ntk - Nik_l =Nk — nk—l))

then using A, A, and (4.6) we obtain

Atp)™
P(Ntl = nl)“’)Ntk = nk) = C—Atl(;)'"’
ny.
A(tr—trnr) Atk = tp—1))"*"*
% e Atk —tx-1) (n,k = nk_l)! 10S"1$“‘$"k’ (47)
where ny,---,nr € N. Now, according to Kolmogorov’s existence theorem

(See Lesson 2), the distribution of the entire process is determined.

Before making some comments about the axioms, we give the proof of
the Theorem 4.1. In that proof and in the following of the Lesson, the
expression “with probability one” will be omitted.
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Proof. Let g;—, be the moment generating function of N; — N;:
o0
gi—s(u) = E (M N) =Y "P(N, = N, =u)uf, 0<u<l. (48)
k=0

Using the decomposition Ny = (Ny — N,) + (N, — No), and axioms A; and
A, we get
gt(u) = gs(u)gi—s(u), 0<s<t, 0<u<l, (4.9)

which implies for each pair (p, ¢) of integers

0910(®) = (01760)" = (@@)Y1)" = @), (410

On the other hand (4.9) entails the decrease of t — g;(u), consequently

(4.10) remains valid for irrational ’s:

g(w) = (a(w)', t>0. (4.11)

We now show that g;(u) cannot vanish. In fact, if g;;(u) = 0 then
(4.11) implies g1 (u) = 0 and consequently g:(u) = 0 for each ¢ > 0. This is
a contradiction since

g:(u) > P(N; =0) = P(Ty >t) 1 P(Ty >0)=1 as t|0.

Finally we may let
gu(u) = e~ (4.12)

where A(u) is positive.
It remains to identify A(u). To this aim we first show that

P(Np>2)=o0(h) as h—0. (4.13)
Note that for A > 0,

> {Nn-1yh =0, Nph = Nin_1yn > 2} C{T2 < T1 + h}
n>1

then since P(N; = 0) = g:(0) = et we obtain, using A; and A,,

Y exp(~(n — 1)RA(0)) P(Ns > 2) < P(Ty < T3 + h). (4.14)

n>1

Now it is clear that A(0) # 0, unless (4.12) implies g¢(0) = 1 for each
t > 0, consequently 1 = P(N; = 0) = P(Ty > t) for each t > 0, hence
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Ti = +00 a.s. which contradicts Ag. Thus (4.14) may be written under the
form

P(N» > 2)
m <P(To<Ti+h).
Now,as h | 0, P(Ta < Ty + h) | P(T> < T1) =0 and 1 — e~ 7} ~ h)(0)
hence (4.13).
On the other hand, we have

AMu) = 'm_l_ — e~ hAw)
(u) lhllo h (1 ¢ )
so by (4.8) and (4.12)

A =lim Y PNy = B)(1 - o)

Using (4.13) we obtain
0< l}‘lﬁ)lkZ”EP(Nh =k)(1 - ) <lim ——== = 0.

Consequently,
.1
Au) = lhlﬂ)l ZP(Nh =1)(1—-u) = A1 —u),

where A = limy o P(Ny = 1)/h. Finally
gt(u) = e-)\t(l—u)’ 0 S u S 11

which is the moment generating function of P(At) and the proof is complete.
<

The following important properties of (N;) have been obtained in the
above proof:

Corollary 4.1 As h — 0(+), we have
P(Nepn — Ny = 0) = 1= Ak + o(h), (4.15)

P(Neyn — Ny = 1) = A+ o(h), (4.16)
P(Niyn — Ny > 2) = o(h). (4.17)
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Thus, for small h, Ny, — N; follows approximately the Bernoulli distri-
bution B(1, Ah): in a sufficiently small time interval, at most one event may
occur and the probability of this occurrence is proportional to the length
of that interval.

Comments about axioms

In order to construct Poisson Processes, other axioms may be used.
Consider the axioms

Ajy: Ng=0; 0<P(N;>0)<1,t>0.
As: Foranyt >0,

. P(Nyyn— N >2)
o P(Neyn —N: =1) g,

Then Aj and Ag together with A; and A, imply (4.6). Clearly Aj and As
are consequences of Ag, A;, and A,. It should be noticed that our axioms

are simpler than classical systems like Af;, A; , A3, and A3. The idea may
be found in Neveu (1990).

4.3 Interarrival Times

Let (Ng, t > 0) be a Counting Process associated with the Point Process
(T, n > 1). Set Ty = 0 and consider the interarrival times

Wp=Ty—Taoy, n>1

If (N;) is a Poisson Process, then the sequence (W,) has some special
properties given by the following

Theorem 4.2 Let (N;) be a Poisson Process with intensity A\. Then the
W, ’s are independent with common ezponential distribution characterized
by

PW,>t)=e*,  t>0,n>1 (4.18)

and consequently
E(W,) =1/A, n> 1. (4.19)

Theorem 4.2 contains an important and paradoxical property of Poisson
Processes: if n > 2, W, is the waiting time between two successive events,
but this interpretation is not true for Wy = 11 — T since Ty = 0 is not an
event time-arrival. However W; and W,, have the same distribution!
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Proof of Theorem 4.2. It suffices to show that
P(Wi>t, -, Wo>t,) = He_’\", ti, - tn >0, n> 1. (4.20)
i=1
If n = 1 the result follows from Theorem 4.1 since
P(Wy>t)=P(T1>t))=P(N;=0) = e,

Now for convenience, we only establish (4.18) for n = 2. A similar proof
could be given for n > 2.
Taking 0 < 57 < t; < s3 < ta, we may write
P(81 <Ti <ty1,80< Ty <t2)
= P(Nsy =0,Nyy — Ny, =1,N,;, — Ny, =0, Ny, — N,
— e_AslA(tl _ sl)e—A(tl—sl)e—/\(SQ—tl) (1 _ e/\(iz-#g))

= At1—s1) (e')"2 - e"M’)

~ 1\
22 1)

/ Aze")‘y’dyldyg.
$1<Y1<1t1,32<Y2<12

Which shows that
(yl; ?12) — ’\Ze_Ay2l{0<y1<y2}

is the density of (T1,T3). Since (W1, Wy) = (T1,T1 + T3) it follows that the
density of (Wi, Ws) is

AZE—/\(UJ1+HJ2)]_{W1>0’W2>O},
hence (4.20) by integration. <
Corollary 4.2 T, has the distribution Gamma (n, ) with density

Falt) = Ae™ 8?"1')1! 1R, ®). (4.21)

Proof. Consider the identity

n—1 .
J
P(Th >t)=P(Ny<n)= E e"“%, t>0.
j=0 .
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Taking derivative with respect to ¢ we get

n-1 i n-1 jai—1
_fn(t) — _I\Ze—m%_'_ze—)‘t /\'t -
j=0 S = (-1
()1

.- At
A

t>0,

hence the desired result follows. O

We now show that the obtained properties in Theorem 4.2 characterize
Poisson Processes.

Theorem 4.3 Let (T,) be a Point Process such that the random variables
Wp =T, —Th-1, n > 1 are independent with the same exponential distribu-
tion £(X). Then the associated Counting Process (N;) is a Poisson Process
with intensity .

Proof. By hypothesis (W, - -, W,) has the density

/\ne—)\(w1+...+wn)1{wl>0

1“';wn>0}'
Setting
ti= w1+ -+ wy, 1<i<n,
we obtain the density of (T3, --,T,):
f(T1,~~~,T,.)(t1, s ty) = /\"e_’\t"l{0<tl<.,.<tn}. (4.22)

Now, for convenience, we only compute the distribution of (N,, N;—Nj),
t > s. For that purpose we write

P(Ny=k,N;— Ny =n)=P(Tx <5< Tetn, Tetn <t < Thynt1)

AEHn+l o= Atkgnts dt1 - -dlpyntl-

/0<t1<"'<tks-‘<"'<tk+nst<tk+n+1

Now it is easy to obtain the following equalities:

o0
/ Ak+n+le—/\tk+n+1 dtk+n+1 — e—AtAk+n’
t

(t—s)"
n!

/ dtpyr - dipyn =
s<tr41< " <tr4n<t
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and

sk

/ dty - -dty = .
0<t:< - <tx<s k!

Combining the above results and applying Fubini’s Theorem (see Appendix),
we obtain

n!

‘ —_— n
P(N,=k,N,— N, =n)= (/\ne—,\(t_,)g__i)_)

k
X <,\’=e-*’s—), k=0,1,2,---, n=0,1,2,---.

k!
which completes the the proof of Theorem 4.3. <
Finally we may characterize a Poisson Process either by
(N, N. _ N, ... N. _N. YuDMNXD...DI\M+. _+. Y (499
\4Vt1y 48 iVt y 4V AVEig—1) LA RAI2 Y A% & I\ vk tk—1)) \3.49)
k>1,0<t; <---<tg,orby
(T1, o = T1, -+, Tn = Tn-1) ~ ®"E(N), (4.24)

where ~ means “is distributed as” and ® denotes the product measure (see
Appendix).

4.4 Some Properties of Poisson Processes

The current section is devoted to some properties which are useful for sta-
tistical studies of Poisson Processes.

a) Poisson processes and order statistics

First let us define the order statistics associated with i.i.d real random
variables Uy, - - -, Uk, as the random vector (U1),-- -, Uk)) where Ugy <
-+ < Ux) is a rearrangement of the U;’s.

The next theorem shows that (71, - - -, T ) is a “conditional” order statis-
tics.

Theorem 4.4 Let (N;) be a Poisson Process associated with the Point
Process (Ty,), then

LTy, TR)INe=k) =L ((Upy, -, Uwy)), k=1,2,---;¢t>0, (4.25)

where (U1, - - -, Uwr)) denotes the order statistics associated with i.i.d. ran-
dom variables with uniform distribution over [0,1].



