
CHAPTER 3

Random Point Processes

3.1  BASIC CONCEPTS

A point process is a sequence of real numbers  with propertiest1, t2, ...

                                    (3.1)t1 t2 . .. and lim
i

ti .

That means, a point process is a strictly increasing sequence of real numbers, which
does not have a finite limit point. In practice, point processes occur in numerous sit-
uations: arrival time points of customers at service stations (workshops, filling sta-
tions, supermarkets, ...), failure time points of machines, time points of traffic acci-
dents, occurrence of nature catastrophies, occurrence of supernovas,... Generally, at
time point  a certain event happens. Hence, the  are called event times. With re-ti ti
gard to the arrival of customers at service stations, the  are also called arrival times.ti
If not stated otherwise, the assumption  is made.t1 0

Although the majority of applications of point processes refer to sequences of time
points, there are other interpretations as well. For instance, sequences  cant1, t2, ...
be generated by the location of potholes in a road. Then  denotes the distance of theti

 pothole from the beginning of the road. Or, the location is measured, at which ani th
imaginary straight line, which runs through a forest stand, hits trees. (This is the base
of the well-known Bitterlich method for estimating the total number of trees in a for-
est stand.) Strictly speaking, since both road and straight line through a forest stand
have finite lengths, to meet assumption (3.1), they have to be considered finite sam-
ples from a point process.

A  point  process  can equivalently be represented by the sequen  of  itst1, t2, ... ce

interevent (interarrival) times

y1, y2, ... with yi ti ti 1; i 1, 2, ...; t0 0.

Counting Process  Frequently, the event times are of less interest than the number of
events, which occur in an interval  This number is denoted as :0, t , t 0. n t

n t max n, tn t .

For obvious reasons,  is said to be the counting process belonging to then t , t 0
point process  Here and in what follows, it is assumed that more than onet1, t2, ... .
event cannot occur at a time. Point processes with this property are called simple.
The number of events, which occur in an interval , iss, t s t,

 n s, t n t n s .



To be able to count the number  of events which occur in an arbitrary subset An A
of   the indicator function of the event  '  belongs to A'  is introduced:0, ti

                                         (3.2)Ii A
1 if ti A

0 otherwise
.

Then,

n A i 0 Ii A .

Example 3.1  Let be given a finite sample from a point process:

2, 4, 10, 18, 24, 31, 35, 38, 40, 44, 45, 51, 57, 59

The figures indicate the times (in seconds) at which within a time span of a minute a
car passes a control point. Then, within the first 16 seconds,  cars passedn 16 3
the control point, and in the interval  exactly 31, 49 n 31, 49 n 49 n 30 5
cars passed the control point. In terms of the indicator function (3.2), given the time
span A 10, 20 51, 60

I18 A I24 A I51 A I57 A I59 A 1,

    for Ii A 0 i 18, 24, 51, 57, 59.

Hence,

                                n A i 0 Ii A i 0
60

Ii A 5 .

Recurrence Times  The  forward recurrence time of a point process  witht1, t2, ...
respect to time point  is defined ast

                 (3.3)a t tn 1 t for tn t tn 1; n 0, 1, ..., t0 0.

Hence,  is the time span from t (usually interpreted as the 'presence') to the occur-a t
rence of the next event. A simpler way of characterizing  isa t

                                             (3.4)a t tn t 1 t .

 is the largest event time before t and  is the smallest event time after t.tn t tn t 1

The backward recurrence time  with respect to time point t isb t

                                              (3.5)b t t tn t .

Thus,  is the time which has elapsed from the last event time before t to time t.b t

Marked Point Processes Frequently, in addition to their arrival times, events come
with another piece of information. For instance: If  is the time point the i th custom-ti
er arrives at a supermarket, then the customer will spend there a certain amount of
money . If  is the failure time point of a machine, then the time (or cost)  ne-mi ti mi
cessary for removing the failure may be assigned to . If  denotes the time of theti ti

 bank robbery in a town, then the amount  the robbers got away with is of in-i th mi
terest. If is the arrival time of the ith claim at an insurance company, then the sizeti
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 of this claim is of particular importance to the company. If  is the time of the mi ti i th
supernova in a century, then its light intensity  is of  interest to astronomers, andmi
so on. This leads to the concept of a marked point process: Given a point process

 a sequence of two-dimensional vectorst1, t2, ... ,

                                          (3.6)t1, m1 , t2, m2 , ...

with  being an element of a mark space M is called a marked point process. Inmi
most applications, as in the four examples above, the mark space M is a subset of the
real axis   with the respective unites of measurements attached.,

Random Point Processes  Usually the event times are random variables. A sequence
of random variables  withT1, T2, ...

  and                               (3.7)T1 T2
. .. P lim

i
Ti 1

is a random point process. By introducing the random interevent (interarrival) times

Yi Ti Ti 1; i 1, 2, ...; T0 0,

a random point process can equivalently be defined as a sequence of positive random
variables  with propertyY1, Y2, ...

P lim
n i 0

n
Yi 1.

In either case, with the terminology introduced in section 2.1, a random point process
is a discrete-time stochastic process with state space  Thus, a point pro-Z 0, .
cess (3.1) is a sample path, a realization or a trajectory of a random point process. A
point process is called simple if at any time point t not more than one event can occur.

Recurrent Point Processes  A random point process  is said to be recur-T1, T2, ...
rent if its corresponding sequence of interarrival times  is a sequence ofY1, Y2, ...
independent, identically distributed random variables. The most important recurrent
point processes are homogenous Poisson processess and renewal processes (sections
3.2.1 and 3.3).

Random Counting Processes  Let

N t max n, Tn t

be the random number of events occurring in the interval  Then the contin-0, t .
uous-time stochastic process  with state space  is called theN t , t 0 Z 0, 1, ...
random counting process belonging to the random point process  AnyT1, T2, ... .
counting process  has propertiesN t , t 0

1) N 0 0,

2) N s N t for s t ,

3) For any s, t  with  the increment  is equal to the num-0 s t, N s, t N t N s
ber of events which occur in s, t .
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Conversely, every stochastic process  in continuous time having theseN t , t 0
three properties is the counting process of a certain point process  Thus,T1, T2, ... .
from the statistical point of view  the stochastic processes,

,  ,  and  T1, T2, ... Y1, Y2, ... N t , t 0

are equivalent. For that reason, a random point process is frequently defined as a con-
tinuous-time stochastic process  with properties 1 to 3. Note thatN t , t 0

N t N 0, t .

The most important characteristic of a counting process  is the probabil-N t , t 0
ity distribution of its increments , which determines for all inter-N s, t N t N s
vals  the probabilitiess, t , s t,

 pk s, t P N s, t k ; k 0, 1, ...

The mean numbers of events in  iss, t

                    (3.8)m s, t m t m s E N s, t k 0 k pk s, t .

With

pk t pk 0, t ,

the trend function of the counting process  isN t , t 0

                             (3.9)m t E N t k 0 k pk t , t 0.

A random counting process is called simple if the underlying point process is simple.
Figure 3.1 shows a possible sample path of a simple random counting process.

Note  In what follows the attribute 'random' is usually omitted if it is obvious from the
notation or the context that random point processes or random counting processes are
being dealt with.

Definition 3.1 (stationarity)  A point process  is called stationary if itsT1, T2, ...
sequence of interarrival times  is strongly stationary (section 2.3), that isY1, Y2, ...
if for any sequence of integers  with  andi1, i2, ..., ik 1 i1 i2 . .. ik, k 1, 2, ...
for any  the joint distribution functions of the following two random0, 1, 2, ...,
vectors coincide:

  and                          Yi1
, Yi2

, ..., Yik
Yi1

, Yi2
, ..., Yik

.
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Figure 3.1  Sample path of a simple counting process
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It is an easy exercise to show that if the sequence  is strongly stationary,Y1, Y2, ...
the corresponding counting process  has homogeneous increments andN t , t 0
vice versa. This implies the following corollary from definition 3.1:

Corollary  A point process  is stationary if and only if its correspondingT1, T2, ...
counting process  has homogeneous increments.N t , t 0

Hence, for a stationary point process, the probability distribution of any increment
 depends only on the difference N s, t t s :

               (3.10)pk P N s, s k ; k 0, 1, ...; s 0, 0.

Thus, for a stationary point process,

             (3.11)m m s, s m s m s for all s 0, 0.

For having nondecreasing sample paths, neither the point process  nor itsT1, T2, ...
corresponding counting process  can be stationary as defined in sectionN t , t 0
2.3. In particular, since only simple point processes are considered, the sample paths
of are step functions with jump heights being equal to 1.N t , t 0

Remark  Sometimes it is more convenient or even necessary to define random point
processes  doubly infinite sequencesas

..., T 2, T1, T0, T1, T2, ... ,

which tend to infinity to the left and to the right with probability 1. Then their sample
paths are also doubly infinite sequences:  and only the in-..., t 2, t1, t0, t1, t2, ...
crements of the corresponding counting process over finite intervals are finite.

Intensity of Random Point Processes  For stationary point processes, the mean
number of events occurring in  is called the intensity of the process and will be0, 1
denoted as  By making use of notation (3.9),.

                                    (3.12)m 1 k 0 k pk 1 .

In view of the stationarity,  is equal to the mean number of events occurring in any
interval of length 1:

m s, s 1 , s 0.

Hence, the mean number of events occurring in any interval  of length  iss, t t s

m s, t t s .

Given a sample path  of a stationary random point process,  is estimatedt1, t2, ...
by the number of events occurring in  divided by the length of this interval:0, t

n t /t ,

In example 3.1, an estimate of the intensity of the underlying point process (assumed
to be stationary) is 14 /60 0.233.
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In case of a nonstationary point process, the role of the constant intensity  is taken
over by an intensity function  This function allows to determine the mean num-t .
ber of events  occurring in an interval  For any m s, t s, t : s, t with 0 s t,

m s, t s
t x dx .

Specifically, the mean number of events in  is the trend function of the corres-0, t
ponding counting process:

                                 (3.13)m t m 0, t 0
t x dx , t 0.

Hence, for t 0,

                                     (3.14)m t t t o t ,

so that for small  the product  is approximately the mean number of eventst t t
in  Another interpretation of (3.14) is: If  is sufficiently small, thent, t t . t

 is approximately the probability of the occurrence of an event in the intervalt t
 Hence, the intensity function  is the arrival rate of events at time t.t, t t . t

(For Landau's order symbol , see (1.41).)o x

Random Marked Point Processes  Let  be a random point process withT1, T2, ...
random marks  assigned to the event times . Then the sequenceMi Ti

                                     (3.15)T1, M1 , T2, M2 , ...

is called a random marked point process. Its (2-dimensional) sample paths are given
by (3.6). The pulse process  considered in example 2.5 is aTn, An ; n 1, 2, ...
special marked point processes.

Random marked point processes are dealt with in full generality in Matthes, Kerstan,
and Mecke [60]. For other  mathematically prestigious treatments, see, for instance,
König and Schmidt [51] or Stigman [78].

Compound Stochastic Processes  Let  be a random mark-T1, M1 , T2, M2 , ...
ed point process and  be the counting process belonging to the pointN t , t 0
process . The stochastic process  defined byT1, T2, ... C t , t 0

C t
0 for 0 t T1

i 1
N t

Mi for t T1

is called a compound (cumulative, aggregate) stochastic process. According to the
underlying point process, there are, for instance, compound Poisson processes and
compound renewal processes. If  is a claim arrival process and  theT1, T2, ... Mi
size of the i th claim, then  is the total claim amount in . If  is the time ofC t 0, t Ti
the i th breakdown of a machine and  the corresponding repair cost, then  isMi C t
the total repair cost in 0, t .
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3.2  POISSON PROCESSES

3.2.1     Homogeneous Poisson Processes

3.2.1.1  Definition and Properties

In the theory of stochastic processes, and maybe even more in its applications, the
homogeneous Poisson process is just as popular as the exponential distribution in
probability theory. Moreover, there is a close relationship between the homogeneous
Poisson process and the exponential distribution (theorem 3.2).

Definition 3.2 (homogeneous Poisson process)  A counting process  isN t , t 0
a homogeneous Poisson process with intensity  if it has the following prop-, 0,
erties:

1) N 0 0,

2)  is a stochastic process with independent increments.N t , t 0

3) Its increments  have a Poisson distribution with pa-N s, t N t N s , 0 s t,
rameter :t s

                                     (3.16)P N s, t i
t s i

i!
e t s ; i 0, 1, .... ,

or, equivalently, introducing the length  of the interval  for all t s s, t , 0,

                                                         (3.17)P N s, s i
i

i!
e ; i 0, 1, ....

                                                                                 

(3.16) implies that the homogeneous Poisson process has homogeneous increments.
Thus, the corresponding  Poisson point process  is stationary in the senseT1, T2, ...
of definition 3.1.

Theorem 3.1 A counting process  with  is a homogeneous Pois-N t , t 0 N 0 0
son process with intensity  if and only if it has the following properties:

a)  has homogeneous and independent increments.N t , t 0

b) The process is simple, i.e. .P N t, t h 2 o h

c) .P N t, t h 1 h o h

Proof  To prove that definition 3.2 implies properties a), b) and c),  it  is only neces-
sary to show that a homogeneous Poisson process satisfies properties b) and c).

The simplicity of the Poisson process easily results from (3.17):

P N t, t h 2 e h

i 2

h i

i!

2 h2e h

i 0

h i

i 2 !
2h2 o h .
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Another application of (3.17) and the simplicity of the Poisson process proves c):

 P N t, t h 1 1 P N t, t h 0 P N t, t h 2

1 e h o h 1 1 h o h

.h o h

Conversely, it needs to be shown that a stochastic process with properties a), b) and
c) is a homogeneous Poisson process. In view of the assumed homogeneity of the in-
crements, it is sufficient to prove the validity of (3.17) for . Thus, lettings 0

pi t P N 0, t i P N t i ; i 0, 1, ...

it is to show that

                                                 (3.18)pi t
t i

i!
e t; i 0, 1, ....

From a),

p0 t h P N t h 0 P N t 0, N t, t h 0

P N t 0 P N t, t h 0 p0 t p0 h .

In view of b) and c)  this result implies,

p0 t h p0 t 1 h o h

or, equivalently,
p0 t h p0 t

h
p0 t o h .

Taking the limit as  yieldsh 0

.p0 t p0 t

Since , the solution of this differential equation isp0 0 1

p0 t e t, t 0,

so that (3.18) holds for .i 0

Analogously, for i 1,

pi t h P N t h i

P N t i, N t h N t 0 P N t i 1, N t h N t 1

k 2
i

P N t k, N t h N t i k .

Because of c), the sum in the last row is  Using properties a) and b),o h .

pi t h pi t p0 h pi 1 t p1 h o h

pi t 1 h pi 1 t h o h ,

or, equivalently,
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pi t  h pi t

h
pi t pi 1 t  o h .

Taking the limit as  yields a system of linear differential equations in the h  0 pi t

                         (3.19)pi t pi t pi 1 t ; i  1, 2, ...

Starting with  the solution (3.18) is obtained by induction.                  p0 t e t,

The practical importance of theorem 3.1 is that the properties a), b) and c) can be
verified without any quantitative investigations, only by qualitative reasoning based
on  the  physical  or  other nature of  the  process. In particular,  the  simplicity of  the
homogeneous Poisson process implies that the occurrence of more than one event at
the same time has probability 0.

Note  Throughout this chapter, those events, which are counted by a Poisson process
 will be called Poisson events. N t , t  0 ,

Let  be the point process, which belongs to the homogeneous PoissonT1, T2, ...
process  i.e.  is the random time point at which the n th Poisson eventN t , t  0 , Tn
occurs The obvious relationship.

 if and only if Tn  t N t n

implies

                                     (3.20)P Tn  t P N t n .

Therefore,  has  distribution functionTn

                                      (3.21)FTn t P N t n
i n

t i

i!
e t ; n  1, 2, ...

Differentiation of  with respect to t yields the density of :FTn t Tn

fTn t e t 

i n

t i 1

i  1 !
e t 

i n

t i

i!
.

On the right-hand side of this equation, all terms but one cancel:

                                             (3.22)fTn t
t n 1

n  1 !
e t; t  0, n  1, 2, ...

Thus,  has an Erlang distribution with parameters n and  In particular,  has anTn . T1
exponential distribution with parameter  and the interevent times

 Yi  Ti  Ti 1; i  1, 2, ...; k  1, 2, ...; T0  0.

are independent and identically distributed as  (see example 1.23). Moreover,T1

Tn i 1
n

Yi.

These results yield the most simple and, at the same time, the most important charac-
terization of the homogeneous Poisson process:
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Theorem 3.2  Let  be a counting process and  be the corres-N t , t 0 Y1, Y2, ...
ponding sequence of interarrival times. Then  is a homogeneous PoissonN t , t 0
process with intensity  if and only if the  are independent, exponentiallyY1, Y2, ...
with parameter  distributed random variables.                                                          

The counting process  is statistically equivalent to both its correspondingN t , t 0
point process  of event times and the sequence of interarrival timesT1, T2, ...

 Hence,  and  are sometimes also called PoissonY1, Y2, .... . T1, T2, ... Y1, Y2, ...
processes.

Example 3.2  From previous observations it is known that the number of traffic acci-
dents N(t) in an area over the time interval  can be described by a homogeneous0, t
Poisson process  On an average, there is one accident within 4 hours,N t , t 0 .
i.e. the intensity of the process is

.0.25 h 1

(1) What is the probability p of the event (time unit: hour)

"at most one accident in [0, 10), at least two accidents in [10, 16), and no
 accident in [16, 24)"?

This probability is

p P N 10 N 0 1, N 16 N 10 2, N 24 N 16 0 .

In view of the independence and the homogeneity of the increments of N t , t 0 ,
 can be determined as follows:p

p P N 10 N 0 1 P N 16 N 10 2 P N 24 N 16 0

P N 10 1 P N 6 2 P N 8 0 .

Now,

P N 10 1 P N 10 0 P N 10 1

e 0.25 10 0.25 10 e 0.25 10 0.2873,

P N 6 2 1 e 0.25 6 0.25 6 e0.25 6 0.4422,

P N 8 0 e 0.25 8 0.1353.

Hence, the desired probability is p 0.0172 .

(2) What is the probability that the  accident occurs not before 5 hours?2 nd

Since the random time of the occurrence of the second accident, has an ErlangT2,
distribution with parameters  and n 2 0.25,

P T2 5 1 FT2
5 e 0.25 5 1 0.25 5 .

Thus,                                                                                          P T2 5 0.6446 .
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The following examples make use of the hyperbolic sine and cosine functions:

sinh x ex e x

2
, cosh x ex e x

2
, x , .

Example 3.3 (random telegraph signal )  A random signal  have structureX t

                                      (3.23)X t Y 1 N t , t 0,

where  is a homogeneous Poisson process with intensity  and Y is a bi-N t , t 0
nary random variable with

P Y 1 P Y 1 1/2 ,

which is independent of N(t) for all t. Signals of this structure are called random tele-
graph signals. Random telegraph signals are basic modules for generating signals
with a more complicated structure. Obviously, or  and Y determinesX t 1 X t 1
the sign of . Figure 3.2 shows a sample path  of the stochastic processX 0 x x t

 on condition  and X t , t 0 Y 1 Tn tn; n 1, 2, ...

 is wide-sense stationary. To see this, firstly note thatX t , t 0

  for all X t 2 1 t 0.

Hence,  is a second-order process. WithX t , t 0

I t 1 N t ,

its trend function is   Hence, since m t E X t E Y E I t . E Y 0,

m t 0.

It remains to show that the covariance function  of this process depends onlyC s, t
on  This requires knowledge of the probability distribution of I(t): A transitiont s .
from  to  or, conversely, from  to  occurs at thoseI t 1 I t 1 I t 1 I t 1
time points, at which Poisson events occur, i.e. when  jumps:N t

P I t 1 P even number of jumps in 0, t

            e t

i 0

t 2i

2i !
e tcosh t ,
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Analogously,

P I t 1 P odd number of jumps in 0, t

e t

i 0

t 2i 1

2i 1 !
e t sinh t .

Hence the mean value of  isI t

E I t 1 P I t 1 1 P I t 1

e t cosh t sinh t e 2 t.

Since

C s, t Cov X s , X t

E X s X t E Y I s Y I t

E Y2 I s I t E Y2 E I s I t

and   the covariance function of  has structureE Y2 1, X t , t 0

C s, t E I s I t .

Thus, in order to evaluate , the joint distribution of  has to be deter-C s, t I s , I t
mined: From (1.6) and the homogeneity of the increments of  assumingN t , t 0 ,
s t ,

p1,1 P I s 1, I t 1 P I s 1 P I t 1 I s 1

e scosh s P even number of jumps in s, t

e scosh s e t s cosh t s

e tcosh s cosh t s .

Analogously,

p1, 1 P I s 1, I t 1 e t cosh s sinh t s ,

p 1,1 P I s 1, I t 1 e t sinh s sinh t s ,

p 1, 1 P I s 1, I t 1 e t sinh s cosh t s .

Now

,E I s I t p1,1 p 1, 1 p1, 1 p 1,1

so that

C s, t e 2 t s , s t.

Since the order of  and t can be changed,s

C s, t e 2 t s .

Hence, the random telegraph signal  is a weakly stationary process.     X t , t 0
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