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ABSTRACT

A coherent treatment is presented of Price’s theorem, Pawu-
la’s theorem and Bonnet’s theorem. These theorems are of-
ten used for the computation of the expectation of nonlin-
ear functions of normally distributed stochastic variables or
stochastic processes. In addition, a number of modifications
and simplifications of these theorems is proposed. Finally,
a class of non-normal distributions for which the theorems
are true is briefly discussed.

1. INTRODUCTION

Price’s theorem [1], Pawula’s theorem [2] and, to a lesser
extent, Bonnet’s theorem [3] are proven tools in nonlinear
statistical signal processing. These theorems are all con-
cerned with the computation of the expectation of nonlin-
ear functions of normally distributed variates. These expec-
tations are needed in many applications. This is reflected
by the literature where applications of the theorems are re-
ported in the study of receivers, correlation techniques, spec-
tral analysis, amplitude quantization, phase locked loop de-
sign and analysis, adaptive ltering and perceptron studies.
The theorems often produce closed form expressions or ex-
pressions suitable for numerical evaluation, even for expec-
tations of complicated multivariable functions.

Price’s theorem relates the expectation of a nonlinear
function of a number of normally distributed variates to the
covariances of the variates. This relation has the form of
a set of partial differential equations with the covariances
as independent variables. The expectation of the nonlinear
function is the solution of the set. The theorem also has a
complex valued version [4].

Pawula’s theorem is an alternative to Price’s theorem.
Here, the covariance matrix of the variates is parameterized
by a single scalar parameter. Instead of a set of partial dif-
ferential equations, an ordinary linear differential equation
with the parameter as independent variable must be solved
for the expectation of the nonlinear function.

Finally, Bonnet’s theorem describes the relation of the

expectation of a nonlinear function of normal variates to
their expectations.

The three theorems are not, or not coherently, treated in
the reference books known to the author. Therefore, a pur-
pose of the paper is to briefly review them and to present
them in a unified way. Furthermore, a number of modifi-
cations and simplifications is proposed. For example, the
impractical assumption in the usual presentation of Price’s
and Pawula’s theorem that the variances of the variates are
all equal to one is removed. Furthermore, Price’s theorem is
extended to include variances of the variates instead of co-
variances only. Also, Pawula’s theorem is modified to sim-
plify the generation of the integration constant concerned.

Finally, the applicability of the theorems to sums of nor-
mal variates and independent non-normal ones is briefly
discussed. As an example, the proof that Price’s theorem
is true for such sums is outlined.

2. THREE THEOREMS

In this section, Price’s theorem, Pawula’s theorem and Bon-
net’s theorem will be described. In these descriptions,{4> {5
>===> {Q are jointly normally distributed variates withpq

the expectation of{q andfst the covariance of{s and{t.
Furthermore,i will denote a, nonlinear, scalar function of
{4> {5> ===> {Q . ThenPrice’s theorem[1] states that
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wheres 9@ t @ 4> ===> Q and the expectations are taken
with respect to the multivariable normal distribution with
all variances equal to one and with correlation coefficients
�st. Higher-order derivatives with respect to any of the�st
follow from (1) by recursion. Equation (1) is a first-order
partial differential which has to be solved if the purpose is
the computation of the expectation of the function.

Example. The arcsine relation.
Suppose that
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where the sign functionvjq+=, is equal to 1, 0, or -1 as its
argument is positive, equal to zero, or negative, respectively.
Also suppose thatp4 orp5 is equal to zero. Then
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where�+=, is the Dirac delta function. Hence
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The integration constant is equal to zero since for�45 @ 3

H^i ` @ H^vjq+{4,` H^vjq+{5,` @ 3

sincep4 orp5 is equal to zero. �

This example shows an important characteristic of Price’s
theorem for functions of two variables: relatively compli-
cated integrations required by direct computation are avoided
and replaced by a, sometimes simple, solution of a first or-
der partial differential equation in the covariance of the vari-
ates.

With respect to Price’s theorem, the following remarks
may be made. First, the variances are supposed to be equal
to one which is impractical. Also, as a consequence, deriva-
tives with respect to the variances are not included.

If i is a function of more than two variates, the compu-
tation of its expectation requires, in principle, the solution
of a set of partial differential equations. InPawula’s the-
orem [2], on the other hand, the covariance matrix of the
variates is parameterized by a single scalar parameter. The
computation of the expectation of the function requires the
solution of a single ordinary differential equation in this pa-
rameter for any number of variates. The parameterization of
the covariance matrix is as follows. The original covariance
matrix � @ ^�st` with �ss @ 4> s> t @ 4> ===>Q is replaced
by

�� @ ^�4��st�st`= (2)

with �st is the Kronecker delta. This implies that the diag-
onal elements of the new covariance matrix�� are equal to
one and the remaining elements are equal to��st , respec-
tively. Then Pawula’s theorem states that
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As a solution
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is taken whereH3^i ` is the expectation of the functioni
if all {s are uncorrelated.H3^i ` is not necessarily easy to
compute. From this description, it is clear that again the
impractical assumption is made that all variances are equal
to one.

Both Price’s and Pawula’s theorem are concerned with
parameterizations of the covariance matrix. In Price’s the-
orem, the parameters are the off-diagonal covariances> in
Pawula’s theorem the parameter is the multiplier�. In Bon-
net’s theorem[3], on the other hand , the expectationsp4> ===>

pQ of the variates{4> ===> {Q are taken as parameters. Bon-
net’s theorem states that
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with u @ 4> ===> Q .
The proofs of the three theorems in the original ref-

erences are highly diverse and that of Price’s theorem is
relatively complicated. In any case, the theorems have in
common that they produce a derivative of the desired func-
tion expectation with respect to one or more parameters
of the normal probability density function. Using the fact
that a parameter of the probability density function is also
a parameter of the characteristic function, Papoulis [5] has
considerably simplified the proof of Price’s theorem. This
proof concerns functions of two normally distributed vari-
ates and covariances only. In this paper, Papoulis’s idea is
extended to include any number of variates and variances as
well as covariances. It is also used to outline a proof that
Price’s theorem is also true for sums of normal and inde-
pendent non-normal variates.

3. PROOFS USING CHARACTERISTIC
FUNCTIONS

Define{ as the vector of normal variates

{ @ +{4==={Q ,W

and

p @ +p4===pQ ,W

as the vector of their expectations, respectively, where the
superscriptW indicates transposition. Furthermore, define
the covariance matrix of{ asF @ ^fst` wherefst is the co-
variance of{s and{t=Then the probability density function
of { is described by
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The corresponding characteristic functionS +$, is the con-
jugate of the Fourier transform ofs+{, [5]
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wherem5 @ �4 and$ @ +$4===$Q ,W is the vector of inde-
pendent variables ofS +$,= Therefore,
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where the integration is over$4> ===> $Q .

3.1. A proof of Price’s theorem

A modified version of Price’s theorem may be derived as
follows. By (4)
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From (3) it follows that
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Substituting of this result in (6) and, subsequently, applying
the Fourier differentiation theorem shows that
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This version of Price’s theorem is different from (1) in two
respects: the variances need not be equal to one and the par-
tial derivatives ofH^i ` with respect to the variancesfss are
included. This enhances the applicability of the theorem.

3.2. A proof of Pawula’s theorem

In this section, a proof of Pawula’s theorem using a param-
eterization different from that of (2) is given. The parame-
terization proposed is:

F� @ �^fst`= (8)

If in (2) � is equal to zero, the covariance matrix of{ be-
comes the identity matrix. If, on the other hand, in (8)�

is equal to zero, the covariance matrix of{ is the null ma-
trix. Then the corresponding probability density function is
singular and becomes a Dirac delta function located at the
point +p4> ===>pQ ,= Furthermore, the variancesfss in (8)
may be different from one. The characteristic function of
normally distributed variates with a covariance matrix (8) is
described by
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Then
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From (9) it follows that
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Substituting this result in (10) and applying the Fourier dif-
ferentiation theorem yields
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Finally, integrating by parts over{s and{t shows that
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Integration with respect to� then produces
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Notice that the integration constanti+p, only requires the
substitutionp @ +p4===pQ ,W for { in i+{,.

3.3. A proof of Bonnet’s theorem

Bonnet’s theorem may be derived as follows. From (5) it
follows that
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with u @ 4> ===> Q= Furthermore, (3) shows that
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Then substituting this expression in (11) and applying the
Fourier differentiation theorem shows that
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Integrating by parts over{u yields Bonnet’s theorem:
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3.4. General characteristics of the proofs

The three proofs presented in the sections 3.1 -3.3 are based
on suitably parameterized characteristic functions. In Price’s
theorem, the parameters are all variances and covariances of
the normal variates concerned. In Pawula’s theorem, there is
only one scalar parameter by which the covariance matrix is
multiplied while in Bonnet’s theorem the parameters are all
expectations of the variates. Other parameterizations, such
as those used in Price’s and Pawula’s original publications,
are also possible. Then in each of the proofs the probabil-
ity density function is written as the inverse Fourier trans-
form of the characteristic function. The remaining steps are
the same in each of the theorems and are standard calcu-
lus. Since thus the only difference in the three theorems
is the parameterization of the characteristic function, it is
believed that a considerable unification and simplification
has been achieved. In addition, in the proofs impractical as-
sumptions such as variances equal to one were found to be
unnecessary.

4. NON-NORMAL VARIATES

In a comment on his own paper [6], Price states without
proof that his theorem is also true for sums of normally dis-
tributed variates and independent non-normal variates if the
derivatives concerned are taken with respect to the covari-
ances of the normal variates. Analogously, Pawula’s theo-
rem and Bonnet’s theorem may be extended to include such
sum variates. As a representative example, the proof of
Price’s theorem for sum variates is presented now.

Suppose that independent, non-normal variates| @ +|4
===|Q ,W with a characteristic functionT+$, are added to
the normally distributed variates{ @ +{4==={Q ,W . Then
the characteristic functionU+$, of the of the sum variates
} @ {. | is described by
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From this expression, it follows that

CU+$,

Cfst
@ �+

4

5
,�st$s$tU+$,=

The rest of the proof is the same as the proof of Price’s the-
orem given in section 3.1. The result is:
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where the expectations are taken with respect to} .

5. CONCLUSIONS

It has been shown that Price’s theorem, Pawula’s theorem
and Bonnet’s theorem can be proved and formulated in a

unified and simplified way. Also the existence of non-normally
distributed variates to which the theorems may be applied
has been briefly discussed.
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