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ABSTRACT expectation of a nonlinear function of normal variates to

A coh . d of Price’s th P their expectations.
coherent treatment Is presented of Price’s theorem, Pawu- The three theorems are not, or not coherently, treated in

la’s theorem and Bonnet's .theorem. These thgorems are Of’che reference books known to the author. Therefore, a pur-
ten used.for the computatllon.of the expectation of nonlin- pose of the paper is to briefly review them and to present
ear funct.|ons of normally d'St.r'.bUted stochastic van_a-bles O them in a unified way. Furthermore, a number of modifi-

StOCh?St'C. processes. In addition, anumber of mOd'f'C,at'O”Scations and simplifications is proposed. For example, the
and simplifications of these theorems is proposed. Finally, impractical assumption in the usual presentation of Price’s

a class qf nqn-norr_nal distributions for which the theorems and Pawula’s theorem that the variances of the variates are
are true is briefly discussed. all equal to one is removed. Furthermore, Price’s theorem is
extended to include variances of the variates instead of co-
1. INTRODUCTION variances only. Also, Pawula’s theorem is modified to sim-
plify the generation of the integration constant concerned.
Price’s theorem [1], Pawula’s theorem [2] and, to a lesser  Finally, the applicability of the theorems to sums of nor-
extent, Bonnet's theorem [3] are proven tools in nonlinear mal variates and independent non-normal ones is briefly
statistical signal processing. These theorems are all condiscussed. As an example, the proof that Price’s theorem
cerned with the computation of the expectation of nonlin- is true for such sums is outlined.
ear functions of normally distributed variates. These expec-
tations are needed in many applications. This is reflected 2. THREE THEOREMS
by the literature where applications of the theorems are re-
ported in the study of receivers, correlation techniques, specin this section, Price’s theorem, Pawula’s theorem and Bon-
tral analysis, amplitude quantization, phase locked loop de-net’s theorem will be described. In these descriptionszs
sign and analysis, adaptive Itering and perceptron studies...., zy are jointly normally distributed variates with,,
The theorems often produce closed form expressions or exthe expectation of,, andc,, the covariance of,, andz,.
pressions suitable for numerical evaluation, even for expec-Furthermore,f will denote a, nonlinear, scalar function of
tations of complicated multivariable functions. x1,x9,...,2. ThenPrice's theorenjl] states that
Price’s theorem relates the expectation of a nonlinear OEf] 92 f
function of a number of normally distributed variates to the =
covariances of the variates. This relation has the form of OPpq 07
a set of partial differential equations with the covariances wherep +# ¢ = 1,..., N and the expectations are taken
as independent variables. The expectation of the nonlineakyith respect to the multivariable normal distribution with
function is the solution of the set. The theorem also has ag|| variances equal to one and with correlation coefficients
complex valued version [4]. p,q- Higher-order derivatives with respect to any of fhe
Pawula’s theorem is an alternative to Price’s theorem. follow from (1) by recursion. Equation (1) is a first-order
Here, the covariance matrix of the variates is parameterizedpartial differential which has to be solved if the purpose is
by a single scalar parameter. Instead of a set of partial dif-the computation of the expectation of the function.
ferential equations, an ordinary linear differential equation Example. The arcsine relation.
with the parameter as independent variable must be solved  Suppose that
for the expectation of the nonlinear function.
Finally, Bonnet’s theorem describes the relation of the f = sgn(x1)sgn(zs)

] @)



where the sign functiongn(.) is equal to 1, 0, or -1 as its  is taken whereEy[f] is the expectation of the functiofi
argument is positive, equal to zero, or negative, respectively.if all z,, are uncorrelatedEy[f] is not necessarily easy to

Also suppose that; or ms is equal to zero. Then compute. From this description, it is clear that again the
impractical assumption is made that all variances are equal
I (L) oore. |
P12 Both Price’'s and Pawula’s theorem are concerned with
_ 2 1 parameterizations of the covariance matrix. In Price’s the-
o7 (1- p%Q)% orem, the parameters are the off-diagonal covariarices
Pawula’s theorem the parameter is the multipkiefn Bon-
whereé(.) is the Dirac delta function. Hence net’s theorenfi3], on the other hand , the expectations, ...,
5 my of the variates:q, ..., zy are taken as parameters. Bon-
E[f] = = arcsin p,, + constant. net’s theorem states that
! OBIf] _ py O
The integration constant is equal to zero sincepfgr= 0 om, ‘Oz,

withr =1,..., N.
The proofs of the three theorems in the original ref-
sincem; or my, is equal to zero. erences are highly diverse and that of Price’s theorem is

0 ) . .
This example shows an important characteristic of Price’d€latively complicated. In any case, the theorems have in
theorem for functions of two variables: relatively compli- €0mmon that they produce a derivative of the desired func-

cated integrations required by direct computation are avoide§On €xpectation with respect to one or more parameters
and replaced by a, sometimes simple, solution of a first or- ©f the normal probability density function. Using the fact
der partial differential equation in the covariance of the vari- that a parameter of the probability density function is also
ates. a parameter of the characteristic function, Papoulis [5] has
With respect to Price’s theorem, the following remarks considerably simplified the proof of Price’s theorem. This

may be made. First, the variances are supposed to be equeﬁ]rOOf concerns functions of two normally distributed vari-
to one which is impractical. Also, as a consequence, deriva-at€s and covariances only. In this paper, Papoulis's idea is
tives with respect to the variances are not included. extended to include any number of variates and variances as

If fis a function of more than two variates, the compu- we_II as covarian(_:es. It is also used to outline a pr001_c that
tation of its expectation requires, in principle, the solution Price’s theorem is also true for sums of normal and inde-
of a setof partial differential equations. IRawula’s the- ~ Pendentnon-normal variates.
orem[2], on the other hand, the covariance matrix of the
variates is parameterized by a single scalar parameter. The 3. PROOFS USING CHARACTERISTIC
computation of the expectation of the function requires the FUNCTIONS
solution of a single ordinary differential equation in this pa-
rameter for any number of variates. The parameterization ofDefinex as the vector of normal variates
the covariance matrix is as follows. The original covariance T
matrix p = [p,,,] with p,, = 1,p,q = 1,..., N is replaced
by

ELf] = Elsgn(a1)] Elsgn(xz)] =0

x=(21..xN)

P
Pa and

m = (my..my)?

Po = [al_ﬁpqppq}' (2) . . .
as the vector of their expectations, respectively, where the

with 6,4 is the Kronecker delta. This implies that the diag- superscrip" indicates transposition. Furthermore, define
onal elements of the new covariance maijxare equalto  the covariance matrix of asC' = [c,4] wherec,, is the co-
one and the remaining elements are equaldp, , respec-  variance ofr;, andz,.Then the probability density function

tively. Then Pawula’s theorem states that of z is described by
1 1
dEq[f] o*f p(@) = —x——— exp{—5 (@ —m)"C" (z —m)}.
do prq Ea[m] : (2m)z (det C)2 2
p<q
As a solution The corresponding characteristic functiBiw) is the con-

| o2 jugate of the Fourier transform ofz) [5]
E|f| = E E, d

p<q




wherej? = —1 andw = (w1..wn)? is the vector of inde- ~ Then
pendent variables dP(w). Therefore,
OE.|f]

1 o -
p(z) = W/P(w) exp(—jw* x)dw 4) 9

1 0P, (w .
:/f(ac) O 8; )exp(fij:c)dw dx .
(10)

where the integration is over, ..., wy. )
From (9) it follows that

3.1. A proof of Price’s theorem
aPa(w) — _%chw Pa((.U).

A modified version of Price’s theorem may be derived as oJet

follows. By (4) Substituting this result in (10) and applying the Fourier dif-

ferentiation theorem yields
Bl = [ f@ps ©) Y
1 , dEq[f] _ 1 0%pa(z)
~ [ 16) Gy [ P explja)ds ds el RAC DL e
and[h(]ence ) Finally, integrating by parts over, andz, shows that
OE[f 1 OP(w .
= — dw dz .
Dcpq /f(m) @n~ | “ac,, “PCIw wdede dE,|[f] _INom 7
(6) da 2 ~ “pg e Oxpdzy”

From (3) it follows that

ap(w) — _(%)%ququ(w).

Integration with respect ta then produces

Ocpq

1/t o f
Substituting of this result in (6) and, subsequently, applying Elfl = 1(m) + 2 /o ;Cpan[aﬂcpaxq]da'
the Fourier differentiation theorem shows that
OE[f] 1., 2f Noticr_e that the integration constaﬁ([m) only requires the
=(3) ”E[m}- (7)  substitutionm = (my...my)7 for zin f(z).
This version of Price’s theorem is different from (1) in two ,
respects: the variances need not be equal to one and the par:3: A Proof of Bonnet's theorem

tial derivatives ofE|[ f] with respect to the varianceg, are Bonnet's theorem may be derived as follows. From (5) it
included. This enhances the applicability of the theorem. ¢4 ,ows that

Ocpq

3.2. A proof of Pawula’s theorem OE[f] _ /f(m) 1 /3P(W) exp(—juwTa)dw da
. : ) . om, (2m)N om,.
In this section, a proof of Pawula’s theorem using a param- (11)
eterization different from that of (2) is given. The parame-
terization proposed is: with » = 1, ..., N. Furthermore, (3) shows that
Co = afcpg). (8) IP(w)
If in (2) « is equal to zero, the covariance matrix.obe- om, = jwrP(w).

comes the identity matrix. If, on the other hand, in ¢8)
is equal to zero, the covariance matrixzofs the null ma- ~ Then substituting this expression in (11) and applying the
trix. Then the corresponding probability density function is Fourier differentiation theorem shows that

singular and becomes a Dirac delta function located at the OE[f] Op(x)

point (my, ..., my). Furthermore, the variances, in (8) = /f(m) DY) .
may be different from one. The characteristic function of om, 9z,
normally distributed variates with a covariance matrix (8) is
described by

Integrating by parts over, yields Bonnet's theorem:

of
oz,

OE|f]

om,

= E[==].

1
Py(w) = exp(faawTC’w + jwTm). 9



3.4. General characteristics of the proofs unified and simplified way. Also the existence of non-normally
istributed variates to which the theorems may be applied

The three proofs presented in the sections 3.1 -3.3 are baseaas been briefly discussed.

on suitably parameterized characteristic functions. In Price’s
theorem, the parameters are all variances and covariances of
the normal variates concerned. In Pawula’s theorem, there is 6. REFERENCES
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sum variates. As a representative example, the proof of
Price’s theorem for sum variates is presented now.
Suppose that independent, non-normal varigtes(y;
~.yn)T with a characteristic functio)(w) are added to
the normally distributed variates = (z;..zy)%. Then
the characteristic functio®(w) of the of the sum variates
z = x + y is described by

R(w) = exp(—%wTC’w + jwl'm) Q(w).

From this expression, it follows that
OR(w) 1
B = *(5)6””%%3(“)-
Pq

The rest of the proof is the same as the proof of Price’s the-

orem given in section 3.1. The result is:
OE[f] _ 1ys 0% f

= (=)re f)| ——

Ocpq (2) [8zpazq]

where the expectations are taken with respeet.to

5. CONCLUSIONS

It has been shown that Price’s theorem, Pawula’s theorem
and Bonnet's theorem can be proved and formulated in a



