
4 Gaussian models

4.1 Introduction

In this chapter, we discuss the multivariate Gaussian or multivariate normal (MVN), which
is the most widely used joint probability density function for continuous variables. It will form
the basis for many of the models we will encounter in later chapters.

Unfortunately, the level of mathematics in this chapter is higher than in many other chapters.
In particular, we rely heavily on linear algebra and matrix calculus. This is the price one must
pay in order to deal with high-dimensional data. Beginners may choose to skip sections marked
with a *. In addition, since there are so many equations in this chapter, we have put a box
around those that are particularly important.

4.1.1 Notation

Let us briefly say a few words about notation. We denote vectors by boldface lower case letters,
such as x. We denote matrices by boldface upper case letters, such as X. We denote entries in
a matrix by non-bold upper case letters, such as Xij .

All vectors are assumed to be column vectors unless noted otherwise. We use [x1, . . . , xD] to
denote a column vector created by stacking D scalars. Similarly, if we write x = [x1, . . . ,xD],
where the left hand side is a tall column vector, we mean to stack the xi along the rows; this is
usually written as x = (xT

1 , . . . ,x
T
D)T , but that is rather ugly. If we write X = [x1, . . . ,xD],

where the left hand side is a matrix, we mean to stack the xi along the columns, creating a
matrix.

4.1.2 Basics

Recall from Section 2.5.2 that the pdf for an MVN in D dimensions is defined by the following:

N (x|μ,Σ) � 1

(2π)D/2|Σ|1/2 exp

[
−1

2
(x− μ)TΣ−1(x− μ)

]
(4.1)



98 Chapter 4. Gaussian models

μ

u
1

u
2

λ
1
1/2

λ
2
1/2

x
1

x 2

Figure 4.1 Visualization of a 2 dimensional Gaussian density. The major and minor axes of the ellipse
are defined by the first two eigenvectors of the covariance matrix, namely u1 and u2. Based on Figure 2.7
of (Bishop 2006a).

The expression inside the exponent is the Mahalanobis distance between a data vector x
and the mean vector μ, We can gain a better understanding of this quantity by performing an
eigendecomposition of Σ. That is, we write Σ = UΛUT , where U is an orthonormal matrix
of eigenvectors satsifying UTU = I, and Λ is a diagonal matrix of eigenvalues.

Using the eigendecomposition, we have that

Σ−1 = U−TΛ−1U−1 = UΛ−1UT =

D∑
i=1

1

λi
uiu

T
i (4.2)

where ui is the i’th column of U, containing the i’th eigenvector. Hence we can rewrite the
Mahalanobis distance as follows:

(x− μ)TΣ−1(x− μ) = (x− μ)T

(
D∑
i=1

1

λi
uiu

T
i

)
(x− μ) (4.3)

=
D∑
i=1

1

λi
(x− μ)Tuiu

T
i (x− μ) =

D∑
i=1

y2i
λi

(4.4)

where yi � uT
i (x− μ). Recall that the equation for an ellipse in 2d is

y21
λ1

+
y22
λ2

= 1 (4.5)

Hence we see that the contours of equal probability density of a Gaussian lie along ellipses.
This is illustrated in Figure 4.1. The eigenvectors determine the orientation of the ellipse, and
the eigenvalues determine how elogonated it is.

In general, we see that the Mahalanobis distance corresponds to Euclidean distance in a
transformed coordinate system, where we shift by μ and rotate by U.
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4.1.3 MLE for an MVN

We now describe one way to estimate the parameters of an MVN, using MLE. In later sections,
we will discuss Bayesian inference for the parameters, which can mitigate overfitting, and can
provide a measure of confidence in our estimates.

Theorem 4.1.1 (MLE for a Gaussian). If we have N iid samples xi ∼ N (μ,Σ), then the MLE for
the parameters is given by

μ̂mle =
1

N

N∑
i=1

xi � x (4.6)

Σ̂mle =
1

N

N∑
i=1

(xi − x)(xi − x)T =
1

N
(

N∑
i=1

xix
T
i )− x xT (4.7)

That is, the MLE is just the empirical mean and empirical covariance. In the univariate case, we
get the following familiar results:

μ̂ =
1

N

∑
i

xi = x (4.8)

σ̂2 =
1

N

∑
i

(xi − x)2 =

(
1

N

∑
i

x2
i

)
− (x)2 (4.9)

4.1.3.1 Proof *

To prove this result, we will need several results from matrix algebra, which we summarize
below. In the equations, a and b are vectors, and A and B are matrices. Also, the notation
tr(A) refers to the trace of a matrix, which is the sum of its diagonals: tr(A) =

∑
i Aii.

∂(bTa)

∂a
= b

∂(aTAa)

∂a
= (A+AT )a

∂

∂A
tr(BA) = BT

∂

∂A
log |A| = A−T � (A−1)T

tr(ABC) = tr(CAB) = tr(BCA)

(4.10)

The last equation is called the cyclic permutation property of the trace operator. Using this,
we can derive the widely used trace trick, which reorders the scalar inner product xTAx as
follows

xTAx = tr(xTAx) = tr(xxTA) = tr(AxxT ) (4.11)



100 Chapter 4. Gaussian models

Proof. We can now begin with the proof. The log-likelihood is

	(μ,Σ) = log p(D|μ,Σ) =
N

2
log |Λ| − 1

2

N∑
i=1

(xi − μ)TΛ(xi − μ) (4.12)

where Λ = Σ−1 is the precision matrix.
Using the substitution yi = xi − μ and the chain rule of calculus, we have

∂

∂μ
(xi − μ)TΣ−1(xi − μ) =

∂

∂yi
yT
i Σ

−1yi
∂yi

∂μ
(4.13)

= −1(Σ−1 +Σ−T )yi (4.14)

Hence

∂

∂μ
	(μ,Σ) = −1

2

N∑
i=1

−2Σ−1(xi − μ) = Σ−1
N∑
i=1

(xi − μ) = 0 (4.15)

μ̂ =
1

N

N∑
i=1

xi = x (4.16)

So the MLE of μ is just the empirical mean.
Now we can use the trace-trick to rewrite the log-likelihood for Λ as follows:

	(Λ) =
N

2
log |Λ| − 1

2

∑
i

tr[(xi − μ)(xi − μ)TΛ] (4.17)

=
N

2
log |Λ| − 1

2
tr [SμΛ] (4.18)

(4.19)

where

Sμ �
N∑
i=1

(xi − μ)(xi − μ)T (4.20)

is the scatter matrix centered on μ. Taking derivatives of this expression with respect to Λ
yields

∂	(Λ)

∂Λ
=

N

2
Λ−T − 1

2
ST
μ = 0 (4.21)

Λ−T = Λ−1 = Σ =
1

N
Sμ (4.22)

so

Σ̂ =
1

N

N∑
i=1

(xi − μ)(xi − μ)T (4.23)

which is just the empirical covariance matrix centered on μ. If we plug-in the MLE μ = x
(since both parameters must be simultaneously optimized), we get the standard equation for the
MLE of a covariance matrix.
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4.1.4 Maximum entropy derivation of the Gaussian *

In this section, we show that the multivariate Gaussian is the distribution with maximum entropy
subject to having a specified mean and covariance (see also Section 9.2.6). This is one reason the
Gaussian is so widely used: the first two moments are usually all that we can reliably estimate
from data, so we want a distribution that captures these properties, but otherwise makes as few
addtional assumptions as possible.

To simplify notation, we will assume the mean is zero. The pdf has the form

p(x) =
1

Z
exp(−1

2
xTΣ−1x) (4.24)

If we define fij(x) = xixj and λij = 1
2 (Σ

−1)ij , for i, j ∈ {1, . . . , D}, we see that this is in
the same form as Equation 9.74. The (differential) entropy of this distribution (using log base e)
is given by

h(N (μ,Σ)) =
1

2
ln
[
(2πe)D|Σ|] (4.25)

We now show the MVN has maximum entropy amongst all distributions with a specified co-
variance Σ.

Theorem 4.1.2. Let q(x) be any density satisfying
∫
q(x)xixj = Σij . Let p = N (0,Σ). Then

h(q) ≤ h(p).

Proof. (From (Cover and Thomas 1991, p234).) We have

0 ≤ KL (q||p) =
∫

q(x) log
q(x)

p(x)
dx (4.26)

= −h(q)−
∫

q(x) log p(x)dx (4.27)

=∗ −h(q)−
∫

p(x) log p(x)dx (4.28)

= −h(q) + h(p) (4.29)

where the key step in Equation 4.28 (marked with a *) follows since q and p yield the same
moments for the quadratic form encoded by log p(x).

4.2 Gaussian discriminant analysis

One important application of MVNs is to define the the class conditional densities in a generative
classifier, i.e.,

p(x|y = c,θ) = N (x|μc,Σc) (4.30)

The resulting technique is called (Gaussian) discriminant analysis or GDA (even though it is a
generative, not discriminative, classifier — see Section 8.6 for more on this distinction). If Σc is
diagonal, this is equivalent to naive Bayes.
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Figure 4.2 (a) Height/weight data. (b) Visualization of 2d Gaussians fit to each class. 95% of the probability
mass is inside the ellipse. Figure generated by gaussHeightWeight.

We can classify a feature vector using the following decision rule, derived from Equation 2.13:

ŷ(x) = argmax
c

[log p(y = c|π) + log p(x|θc)] (4.31)

When we compute the probability of x under each class conditional density, we are measuring
the distance from x to the center of each class, μc, using Mahalanobis distance. This can be
thought of as a nearest centroids classifier.

As an example, Figure 4.2 shows two Gaussian class-conditional densities in 2d, representing
the height and weight of men and women. We can see that the features are correlated, as is
to be expected (tall people tend to weigh more). The ellipses for each class contain 95% of the
probability mass. If we have a uniform prior over classes, we can classify a new test vector as
follows:

ŷ(x) = argmin
c

(x− μc)
TΣ−1

c (x− μc) (4.32)

4.2.1 Quadratic discriminant analysis (QDA)

The posterior over class labels is given by Equation 2.13. We can gain further insight into this
model by plugging in the definition of the Gaussian density, as follows:

p(y = c|x,θ) =
πc|2πΣc|− 1

2 exp
[− 1

2 (x− μc)
TΣ−1

c (x− μc)
]

∑
c′ πc′ |2πΣc′ |− 1

2 exp
[− 1

2 (x− μc′)
TΣ−1

c′ (x− μc′)
] (4.33)

Thresholding this results in a quadratic function of x. The result is known as quadratic
discriminant analysis (QDA). Figure 4.3 gives some examples of what the decision boundaries
look like in 2D.
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Figure 4.3 Quadratic decision boundaries in 2D for the 2 and 3 class case. Figure generated by
discrimAnalysisDboundariesDemo.
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Figure 4.4 Softmax distribution S(η/T ), where η = (3, 0, 1), at different temperatures T . When the
temperature is high (left), the distribution is uniform, whereas when the temperature is low (right), the
distribution is “spiky”, with all its mass on the largest element. Figure generated by softmaxDemo2.

4.2.2 Linear discriminant analysis (LDA)

We now consider a special case in which the covariance matrices are tied or shared across
classes, Σc = Σ. In this case, we can simplify Equation 4.33 as follows:

p(y = c|x,θ) ∝ πc exp

[
μT

c Σ
−1x− 1

2
xTΣ−1x− 1

2
μT

c Σ
−1μc

]
(4.34)

= exp

[
μT

c Σ
−1x− 1

2
μT

c Σ
−1μc + log πc

]
exp[−1

2
xTΣ−1x] (4.35)

Since the quadratic term xTΣ−1x is independent of c, it will cancel out in the numerator and
denominator. If we define

γc = −1

2
μT

c Σ
−1μc + log πc (4.36)

βc = Σ−1μc (4.37)
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then we can write

p(y = c|x,θ) = eβ
T
c x+γc∑

c′ e
βT
c′x+γc′

= S(η)c (4.38)

where η = [βT
1 x+ γ1, . . . ,β

T
Cx+ γC ], and S is the softmax function, defined as follows:

S(η)c = eηc∑C
c′=1 e

ηc′
(4.39)

The softmax function is so-called since it acts a bit like the max function. To see this, let us
divide each ηc by a constant T called the temperature. Then as T → 0, we find

S(η/T )c =
{

1.0 if c = argmaxc′ ηc′

0.0 otherwise
(4.40)

In other words, at low temperatures, the distribution spends essentially all of its time in the
most probable state, whereas at high temperatures, it visits all states uniformly. See Figure 4.4
for an illustration. Note that this terminology comes from the area of statistical physics, where
it is common to use the Boltzmann distribution, which has the same form as the softmax
function.

An interesting property of Equation 4.38 is that, if we take logs, we end up with a linear
function of x. (The reason it is linear is because the xTΣ−1x cancels from the numerator
and denominator.) Thus the decision boundary between any two classes, say c and c′, will be
a straight line. Hence this technique is called linear discriminant analysis or LDA. 1 We can
derive the form of this line as follows:

p(y = c|x,θ) = p(y = c′|x,θ) (4.41)

βT
c x+ γc = βT

c′x+ γc′ (4.42)

xT (βc′ − β) = γc′ − γc (4.43)

See Figure 4.5 for some examples.
An alternative to fitting an LDA model and then deriving the class posterior is to directly

fit p(y|x,W) = Cat(y|Wx) for some C × D weight matrix W. This is called multi-class
logistic regression, or multinomial logistic regression.2 We will discuss this model in detail
in Section 8.2. The difference between the two approaches is explained in Section 8.6.

4.2.3 Two-class LDA

To gain further insight into the meaning of these equations, let us consider the binary case. In
this case, the posterior is given by

p(y = 1|x,θ) =
eβ
T
1 x+γ1

eβ
T
1 x+γ1 + eβ

T
0 x+γ0

(4.44)

=
1

1 + e(β0−β1)
Tx+(γ0−γ1)

= sigm
(
(β1 − β0)

Tx+ (γ1 − γ0)
)

(4.45)

1. The abbreviation “LDA”, could either stand for “linear discriminant analysis” or “latent Dirichlet allocation” (Sec-
tion 27.3). We hope the meaning is clear from text.
2. In the language modeling community, this model is called a maximum entropy model, for reasons explained in
Section 9.2.6.
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Figure 4.5 Linear decision boundaries in 2D for the 2 and 3 class case. Figure generated by
discrimAnalysisDboundariesDemo.

Figure 4.6 Geometry of LDA in the 2 class case where Σ1 = Σ2 = I.

where sigm(η) refers to the sigmoid function (Equation 1.10).
Now

γ1 − γ0 = −1

2
μT

1 Σ
−1μ1 +

1

2
μT

0 Σ
−1μ0 + log(π1/π0) (4.46)

= −1

2
(μ1 − μ0)

TΣ−1(μ1 + μ0) + log(π1/π0) (4.47)

So if we define

w = β1 − β0 = Σ−1(μ1 − μ0) (4.48)

x0 =
1

2
(μ1 + μ0)− (μ1 − μ0)

log(π1/π0)

(μ1 − μ0)
TΣ−1(μ1 − μ0)

(4.49)
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then we have wTx0 = −(γ1 − γ0), and hence

p(y = 1|x,θ) = sigm(wT (x− x0)) (4.50)

(This is closely related to logistic regression, which we will discuss in Section 8.2.) So the final
decision rule is as follows: shift x by x0, project onto the line w, and see if the result is positive
or negative.

If Σ = σ2I, then w is in the direction of μ1−μ0. So we classify the point based on whether
its projection is closer to μ0 or μ1. This is illustrated in Figure 4.6. Furthemore, if π1 = π0, then
x0 = 1

2 (μ1 + μ0), which is half way between the means. If we make π1 > π0, then x0 gets
closer to μ0, so more of the line belongs to class 1 a priori. Conversely if π1 < π0, the boundary
shifts right. Thus we see that the class prior, πc, just changes the decision threshold, and not
the overall geometry, as we claimed above. (A similar argument applies in the multi-class case.)

The magnitude of w determines the steepness of the logistic function, and depends on
how well-separated the means are, relative to the variance. In psychology and signal detection
theory, it is common to define the discriminability of a signal from the background noise using
a quantity called d-prime:

d′ � μ1 − μ0

σ
(4.51)

where μ1 is the mean of the signal and μ0 is the mean of the noise, and σ is the standard
deviation of the noise. If d′ is large, the signal will be easier to discriminate from the noise.

4.2.4 MLE for discriminant analysis

We now discuss how to fit a discriminant analysis model. The simplest way is to use maximum
likelihood. The log-likelihood function is as follows:

log p(D|θ) =

[
N∑
i=1

C∑
c=1

I(yi = c) log πc

]
+

C∑
c=1

⎡
⎣ ∑
i:yi=c

logN (x|μc,Σc)

⎤
⎦ (4.52)

We see that this factorizes into a term for π, and C terms for each μc and Σc. Hence we
can estimate these parameters separately. For the class prior, we have π̂c = Nc

N , as with naive
Bayes. For the class-conditional densities, we just partition the data based on its class label, and
compute the MLE for each Gaussian:

μ̂c =
1

Nc

∑
i:yi=c

xi, Σ̂c =
1

Nc

∑
i:yi=c

(xi − μ̂c)(xi − μ̂c)
T (4.53)

See discrimAnalysisFit for a Matlab implementation. Once the model has been fit, you can
make predictions using discrimAnalysisPredict, which uses a plug-in approximation.

4.2.5 Strategies for preventing overfitting

The speed and simplicity of the MLE method is one of its greatest appeals. However, the MLE
can badly overfit in high dimensions. In particular, the MLE for a full covariance matrix is
singular if Nc < D. And even when Nc > D, the MLE can be ill-conditioned, meaning it is
close to singular. There are several possible solutions to this problem:
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• Use a diagonal covariance matrix for each class, which assumes the features are conditionally
independent; this is equivalent to using a naive Bayes classifier (Section 3.5).

• Use a full covariance matrix, but force it to be the same for all classes, Σc = Σ. This is an
example of parameter tying or parameter sharing, and is equivalent to LDA (Section 4.2.2).

• Use a diagonal covariance matrix and forced it to be shared. This is called diagonal covariance
LDA, and is discussed in Section 4.2.7.

• Use a full covariance matrix, but impose a prior and then integrate it out. If we use a
conjugate prior, this can be done in closed form, using the results from Section 4.6.3; this
is analogous to the “Bayesian naive Bayes” method in Section 3.5.1.2. See (Minka 2000f) for
details.

• Fit a full or diagonal covariance matrix by MAP estimation. We discuss two different kinds
of prior below.

• Project the data into a low dimensional subspace and fit the Gaussians there. See Sec-
tion 8.6.3.3 for a way to find the best (most discriminative) linear projection.

We discuss some of these options below.

4.2.6 Regularized LDA *

Suppose we tie the covariance matrices, so Σc = Σ, as in LDA, and furthermore we perform
MAP estimation of Σ using an inverse Wishart prior of the form IW(diag(Σ̂mle), ν0) (see
Section 4.5.1). Then we have

Σ̂ = λdiag(Σ̂mle) + (1− λ)Σ̂mle (4.54)

where λ controls the amount of regularization, which is related to the strength of the prior, ν0
(see Section 4.6.2.1 for details). This technique is known as regularized discriminant analysis
or RDA (Hastie et al. 2009, p656).

When we evaluate the class conditional densities, we need to compute Σ̂
−1

, and hence Σ̂
−1

mle,
which is impossible to compute if D > N . However, we can use the SVD of X (Section 12.2.3)
to get around this, as we show below. (Note that this trick cannot be applied to QDA, which is
a nonlinear function of x.)

Let X = UDVT be the SVD of the design matrix, where V is D × N , U is an N × N
orthogonal matrix, and D is a diagonal matrix of size N . Furthermore, define the N × N
matrix Z = UD; this is like a design matrix in a lower dimensional space (since we assume
N < D). Also, define μz = VTμ as the mean of the data in this reduced space; we can recover
the original mean using μ = Vμz , since VTV = VVT = I. With these definitions, we can
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rewrite the MLE as follows:

Σ̂mle =
1

N
XTX− μμT (4.55)

=
1

N
(ZVT )T (ZVT )− (Vμz)(Vμz)

T (4.56)

=
1

N
VZTZVT −Vμzμ

T
z V

T (4.57)

= V(
1

N
ZTZ− μzμ

T
z )V

T (4.58)

= VΣ̂zV
T (4.59)

where Σ̂z is the empirical covariance of Z. Hence we can rewrite the MAP estimate as

Σ̂map = VΣ̃zV
T (4.60)

Σ̃z = λdiag(Σ̂z) + (1− λ)Σ̂z (4.61)

Note, however, that we never need to actually compute the D×D matrix Σ̂map. This is because
Equation 4.38 tells us that to classify using LDA, all we need to compute is p(y = c|x,θ) ∝
exp(δc), where

δc = −xTβc + γc, βc = Σ̂
−1

μc, γc − 1

2
μT

c βc + log πc (4.62)

We can compute the crucial βc term for RDA without inverting the D ×D matrix as follows:

βc = Σ̂
−1

mapμc = (VΣ̃zV
T )−1μc = VΣ̃

−1

z VTμc = VΣ̃
−1

z μz,c (4.63)

where μz,c = VTμc is the mean of the Z matrix for data belonging to class c. See rdaFit for
the code.

4.2.7 Diagonal LDA

A simple alternative to RDA is to tie the covariance matrices, so Σc = Σ as in LDA, and then to
use a diagonal covariance matrix for each class. This is called the diagonal LDA model, and is
equivalent to RDA with λ = 1. The corresponding discriminant function is as follows (compare
to Equation 4.33):

δc(x) = log p(x, y = c|θ) = −
D∑

j=1

(xj − μcj)
2

2σ2
j

+ log πc (4.64)

Typically we set μ̂cj = xcj and σ̂2
j = s2j , which is the pooled empirical variance of feature j

(pooled across classes) defined by

s2j =

∑C
c=1

∑
i:yi=c(xij − xcj)

2

N − C
(4.65)

In high dimensional settings, this model can work much better than LDA and RDA (Bickel and
Levina 2004).
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Figure 4.7 Error versus amount of shrinkage for nearest shrunken centroid classifier applied to the
SRBCT gene expression data. Based on Figure 18.4 of (Hastie et al. 2009). Figure generated by
shrunkenCentroidsSRBCTdemo.

4.2.8 Nearest shrunken centroids classifier *

One drawback of diagonal LDA is that it depends on all of the features. In high dimensional
problems, we might prefer a method that only depends on a subset of the features, for reasons
of accuracy and interpretability. One approach is to use a screening method, perhaps based
on mutual information, as in Section 3.5.4. We now discuss another approach to this problem
known as the nearest shrunken centroids classifier (Hastie et al. 2009, p652).

The basic idea is to perform MAP estimation for diagonal LDA with a sparsity-promoting
(Laplace) prior (see Section 13.3). More precisely, define the class-specific feature mean, μcj , in
terms of the class-independent feature mean, mj , and a class-specific offset, Δcj . Thus we have

μcj = mj +Δcj (4.66)

We will then put a prior on the Δcj terms to encourage them to be strictly zero and compute
a MAP estimate. If, for feature j, we find that Δcj = 0 for all c, then feature j will play no role
in the classification decision (since μcj will be independent of c). Thus features that are not
discriminative are automatically ignored. The details can be found in (Hastie et al. 2009, p652)
and (Greenshtein and Park 2009). See shrunkenCentroidsFit for some code.

Let us give an example of the method in action, based on (Hastie et al. 2009, p652). Consider
the problem of classifying a gene expression dataset, which 2308 genes, 4 classes, 63 training
samples and 20 test samples. Using a diagonal LDA classifier produces 5 errors on the test set.
Using the nearest shrunken centroids classifier produced 0 errors on the test set, for a range of
λ values: see Figure 4.7. More importantly, the model is sparse and hence more interpretable:
Figure 4.8 plots an unpenalized estimate of the difference, dcj , in gray, as well as the shrunken
estimates Δcj in blue. (These estimates are computed using the value of λ estimated by CV.)
We see that only 39 genes are used, out of the original 2308.

Now consider an even harder problem, with 16,603 genes, a training set of 144 patients, a
test set of 54 patients, and 14 different types of cancer (Ramaswamy et al. 2001). Hastie et al.
(Hastie et al. 2009, p656) report that nearest shrunken centroids produced 17 errors on the test
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Figure 4.8 Profile of the shrunken centroids corresponding to λ = 4.4 (CV optimal in Fig-
ure 4.7). This selects 39 genes. Based on Figure 18.4 of (Hastie et al. 2009). Figure generated by
shrunkenCentroidsSRBCTdemo.

set, using 6,520 genes, and that RDA (Section 4.2.6) produced 12 errors on the test set, using
all 16,603 genes. The PMTK function cancerHighDimClassifDemo can be used to reproduce
these numbers.

4.3 Inference in jointly Gaussian distributions

Given a joint distribution, p(x1,x2), it is useful to be able to compute marginals p(x1) and
conditionals p(x1|x2). We discuss how to do this below, and then give some applications. These
operations take O(D3) time in the worst case. See Section 20.4.3 for faster methods.
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4.3.1 Statement of the result

Theorem 4.3.1 (Marginals and conditionals of an MVN). Suppose x = (x1,x2) is jointly Gaussian
with parameters

μ =

(
μ1

μ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, Λ = Σ−1 =

(
Λ11 Λ12

Λ21 Λ22

)
(4.67)

Then the marginals are given by

p(x1) = N (x1|μ1,Σ11)

p(x2) = N (x2|μ2,Σ22) (4.68)

and the posterior conditional is given by

p(x1|x2) = N (x1|μ1|2,Σ1|2)

μ1|2 = μ1 +Σ12Σ
−1
22 (x2 − μ2)

= μ1 −Λ−1
11 Λ12(x2 − μ2)

= Σ1|2 (Λ11μ1 −Λ12(x2 − μ2))

Σ1|2 = Σ11 −Σ12Σ
−1
22 Σ21 = Λ−1

11

(4.69)

Equation 4.69 is of such crucial importance in this book that we have put a box around it, so
you can easily find it. For the proof, see Section 4.3.4.

We see that both the marginal and conditional distributions are themselves Gaussian. For the
marginals, we just extract the rows and columns corresponding to x1 or x2. For the conditional,
we have to do a bit more work. However, it is not that complicated: the conditional mean is
just a linear function of x2, and the conditional covariance is just a constant matrix that is
independent of x2. We give three different (but equivalent) expressions for the posterior mean,
and two different (but equivalent) expressions for the posterior covariance; each one is useful in
different circumstances.

4.3.2 Examples

Below we give some examples of these equations in action, which will make them seem more
intuitive.

4.3.2.1 Marginals and conditionals of a 2d Gaussian

Let us consider a 2d example. The covariance matrix is

Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
(4.70)

The marginal p(x1) is a 1D Gaussian, obtained by projecting the joint distribution onto the x1

line:

p(x1) = N (x1|μ1, σ
2
1) (4.71)
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Figure 4.9 (a) A joint Gaussian distribution p(x1, x2) with a correlation coefficient of 0.8. We plot the
95% contour and the principal axes. (b) The unconditional marginal p(x1). (c) The conditional p(x1|x2) =
N (x1|0.8, 0.36), obtained by slicing (a) at height x2 = 1. Figure generated by gaussCondition2Ddemo2.

Suppose we observe X2 = x2; the conditional p(x1|x2) is obtained by “slicing” the joint
distribution through the X2 = x2 line (see Figure 4.9):

p(x1|x2) = N
(
x1|μ1 +

ρσ1σ2

σ2
2

(x2 − μ2), σ
2
1 −

(ρσ1σ2)
2

σ2
2

)
(4.72)

If σ1 = σ2 = σ, we get

p(x1|x2) = N (x1|μ1 + ρ(x2 − μ2), σ
2(1− ρ2)

)
(4.73)

In Figure 4.9 we show an example where ρ = 0.8, σ1 = σ2 = 1, μ = 0 and x2 = 1. We
see that E [x1|x2 = 1] = 0.8, which makes sense, since ρ = 0.8 means that we believe that if
x2 increases by 1 (beyond its mean), then x1 increases by 0.8. We also see var [x1|x2 = 1] =
1 − 0.82 = 0.36. This also makes sense: our uncertainty about x1 has gone down, since we
have learned something about x1 (indirectly) by observing x2. If ρ = 0, we get p(x1|x2) =
N (x1|μ1, σ

2
1

)
, since x2 conveys no information about x1 if they are uncorrelated (and hence

independent).

4.3.2.2 Interpolating noise-free data

Suppose we want to estimate a 1d function, defined on the interval [0, T ], such that yi = f(ti)
for N observed points ti. We assume for now that the data is noise-free, so we want to
interpolate it, that is, fit a function that goes exactly through the data. (See Section 4.4.2.3 for
the noisy data case.) The question is: how does the function behave in between the observed
data points? It is often reasonable to assume that the unknown function is smooth. In Chapter 15,
we shall see how to encode priors over functions, and how to update such a prior with observed
values to get a posterior over functions. But in this section, we take a simpler approach, which
is adequate for MAP estimation of functions defined on 1d inputs. We follow the presentation
of (Calvetti and Somersalo 2007, p135).

We start by discretizing the problem. First we divide the support of the function into D equal
subintervals. We then define

xj = f(sj), sj = jh, h =
T

D
, 1 ≤ j ≤ D (4.74)
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Figure 4.10 Interpolating noise-free data using a Gaussian with prior precision λ. (a) λ = 30. (b)
λ = 0.01. See also Figure 4.15. Based on Figure 7.1 of (Calvetti and Somersalo 2007). Figure generated by
gaussInterpDemo.

We can encode our smoothness prior by assuming that xj is an average of its neighbors, xj−1

and xj+1, plus some Gaussian noise:

xj =
1

2
(xj−1 + xj+1) + εj , 2 ≤ j ≤ D − 2 (4.75)

where ε ∼ N (0, (1/λ)I). The precision term λ controls how much we think the function will
vary: a large λ corresponds to a belief that the function is very smooth, a small λ corresponds
to a belief that the function is quite “wiggly”. In vector form, the above equation can be written
as follows:

Lx = ε (4.76)

where L is the (D − 2)×D second order finite difference matrix

L =
1

2

⎛
⎜⎜⎜⎝
−1 2 −1

−1 2 −1
. . .

−1 2 −1

⎞
⎟⎟⎟⎠ (4.77)

The corresponding prior has the form

p(x) = N (x|0, (λ2LTL)−1) ∝ exp

(
−λ2

2
||Lx||22

)
(4.78)

We will henceforth assume we have scaled L by λ so we can ignore the λ term, and just write
Λ = LTL for the precision matrix.

Note that although x is D-dimensional, the precision matrix Λ only has rank D − 2. Thus
this is an improper prior, known as an intrinsic Gaussian random field (see Section 19.4.4 for



114 Chapter 4. Gaussian models

more information). However, providing we observe N ≥ 2 data points, the posterior will be
proper.

Now let x2 be the N noise-free observations of the function, and x1 be the D−N unknown
function values. Without loss of generality, assume that the unknown variables are ordered first,
then the known variables. Then we can partition the L matrix as follows:

L = [L1, L2], L1 ∈ R
(D−2)×(D−N), L2 ∈ R

(D−2)×(N) (4.79)

We can also partition the precision matrix of the joint distribution:

Λ = LTL =

(
Λ11 Λ12

Λ21 Λ22

)
=

(
LT
1 L1 LT

1 L2

LT
2 L1 LT

2 L2

)
(4.80)

Using Equation 4.69, we can write the conditional distribution as follows:

p(x1|x2) = N (μ1|2,Σ1|2) (4.81)

μ1|2 = −Λ−1
11 Λ12x2 = −LT

1 L2x2 (4.82)

Σ1|2 = Λ−1
11 (4.83)

Note that we can compute the mean by solving the following system of linear equations:

L1μ1|2 = −L2x2 (4.84)

This is efficient since L1 is tridiagonal. Figure 4.10 gives an illustration of these equations. We
see that the posterior mean μ1|2 equals the observed data at the specified points, and smoothly
interpolates in between, as desired.

It is also interesting to plot the 95% pointwise marginal credibility intervals, μj ±
2
√
Σ1|2,jj , shown in grey. We see that the variance goes up as we move away from the

data. We also see that the variance goes up as we decrease the precision of the prior, λ. In-
terestingly, λ has no effect on the posterior mean, since it cancels out when multiplying Λ11

and Λ12. By contrast, when we consider noisy data in Section 4.4.2.3, we will see that the prior
precision affects the smoothness of posterior mean estimate.

The marginal credibility intervals do not capture the fact that neighboring locations are
correlated. We can represent that by drawing complete functions (i.e., vectors x) from the
posterior, and plotting them. These are shown by the thin lines in Figure 4.10. These are not
quite as smooth as the posterior mean itself. This is because the prior only penalizes first-order
differences. See Section 4.4.2.3 for further discussion of this point.

4.3.2.3 Data imputation

Suppose we are missing some entries in a design matrix. If the columns are correlated, we can
use the observed entries to predict the missing entries. Figure 4.11 shows a simple example. We
sampled some data from a 20 dimensional Gaussian, and then deliberately “hid” 50% of the data
in each row. We then inferred the missing entries given the observed entries, using the true
(generating) model. More precisely, for each row i, we compute p(xhi |xvi ,θ), where hi and vi

are the indices of the hidden and visible entries in case i. From this, we compute the marginal
distribution of each missing variable, p(xhij |xvi ,θ). We then plot the mean of this distribution,
x̂ij = E [xj |xvi ,θ]; this represents our “best guess” about the true value of that entry, in the
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Figure 4.11 Illustration of data imputation. Left column: visualization of three rows of the data matrix
with missing entries. Middle column: mean of the posterior predictive, based on partially observed
data in that row, but the true model parameters. Right column: true values. Figure generated by
gaussImputationDemo.

sense that it minimizes our expected squared error (see Section 5.7 for details). Figure 4.11 shows
that the estimates are quite close to the truth. (Of course, if j ∈ vi, the expected value is equal
to the observed value, x̂ij = xij .)

We can use var
[
xhij |xvi ,θ

]
as a measure of confidence in this guess, although this is not

shown. Alternatively, we could draw multiple samples from p(xhi |xvi ,θ); this is called multiple
imputation.

In addition to imputing the missing entries, we may be interested in computing the like-
lihood of each partially observed row in the table, p(xvi |θ), which can be computed using
Equation 4.68. This is useful for detecting outliers (atypical observations).

4.3.3 Information form

Suppose x ∼ N (μ,Σ). One can show that E [x] = μ is the mean vector, and cov [x] = Σ is
the covariance matrix. These are called the moment parameters of the distribution. However,
it is sometimes useful to use the canonical parameters or natural parameters, defined as

Λ � Σ−1, ξ � Σ−1μ (4.85)

We can convert back to the moment parameters using

μ = Λ−1ξ, Σ = Λ−1 (4.86)

Using the canonical parameters, we can write the MVN in information form (i.e., in exponential
family form, defined in Section 9.2):

Nc(x|ξ,Λ) = (2π)−D/2|Λ| 12 exp

[
−1

2
(xTΛx+ ξTΛ−1ξ − 2xT ξ)

]
(4.87)

where we use the notation Nc() to distinguish from the moment parameterization N ().
It is also possible to derive the marginalization and conditioning formulas in information

form. We find

p(x2) = Nc(x2|ξ2 −Λ21Λ
−1
11 ξ1,Λ22 −Λ21Λ

−1
11 Λ12) (4.88)

p(x1|x2) = Nc(x1|ξ1 −Λ12x2,Λ11) (4.89)
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Thus we see that marginalization is easier in moment form, and conditioning is easier in
information form.

Another operation that is significantly easier in information form is multiplying two Gaussians.
One can show that

Nc(ξf , λf )Nc(ξg, λg) = Nc(ξf + ξg, λf + λg) (4.90)

However, in moment form, things are much messier:

N (μf , σ
2
f )N (μg, σ

2
g) = N

(
μfσ

2
g + μgσ

2
f

σ2
g + σ2

g

,
σ2
fσ

2
g

σ2
g + σ2

g

)
(4.91)

4.3.4 Proof of the result *

We now prove Theorem 4.3.1. Readers who are intimidated by heavy matrix algebra can safely
skip this section. We first derive some results that we will need here and elsewhere in the book.
We will return to the proof at the end.

4.3.4.1 Inverse of a partitioned matrix using Schur complements

The key tool we need is a way to invert a partitioned matrix. This can be done using the
following result.

Theorem 4.3.2 (Inverse of a partitioned matrix). Consider a general partitioned matrix

M =

(
E F
G H

)
(4.92)

where we assume E and H are invertible. We have

M−1 =

(
(M/H)−1 −(M/H)−1FH−1

−H−1G(M/H)−1 H−1 +H−1G(M/H)−1FH−1

)
(4.93)

=

(
E−1 +E−1F(M/E)−1GE−1 −E−1F(M/E)−1

−(M/E)−1GE−1 (M/E)−1

)
(4.94)

where

M/H � E− FH−1G (4.95)

M/E � H−GE−1F (4.96)

We say that M/H is the Schur complement of M wrt H. Equation 4.93 is called the partitioned
inverse formula.

Proof. If we could block diagonalize M, it would be easier to invert. To zero out the top right
block of M we can pre-multiply as follows(

I −FH−1

0 I

)(
E F
G H

)
=

(
E− FH−1G 0

G H

)
(4.97)
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Similarly, to zero out the bottom left we can post-multiply as follows(
E− FH−1G 0

G H

)(
I 0

−H−1G I

)
=

(
E− FH−1G 0

0 H

)
(4.98)

Putting it all together we get(
I −FH−1

0 I

)
︸ ︷︷ ︸

X

(
E F
G H

)
︸ ︷︷ ︸

M

(
I 0

−H−1G I

)
︸ ︷︷ ︸

Z

=

(
E− FH−1G 0

0 H

)
︸ ︷︷ ︸

W

(4.99)

Taking the inverse of both sides yields

Z−1M−1X−1 = W−1 (4.100)

and hence

M−1 = ZW−1X (4.101)

Substituting in the definitions we get(
E F
G H

)−1

=

(
I 0

−H−1G I

)(
(M/H)−1 0

0 H−1

)(
I −FH−1

0 I

)
(4.102)

=

(
(M/H)−1 0

−H−1G(M/H)−1 H−1

)(
I −FH−1

0 I

)
(4.103)

=

(
(M/H)−1 −(M/H)−1FH−1

−H−1G(M/H)−1 H−1 +H−1G(M/H)−1FH−1

)
(4.104)

Alternatively, we could have decomposed the matrix M in terms of E and M/E = (H −
GE−1F), yielding(

E F
G H

)−1

=

(
E−1 +E−1F(M/E)−1GE−1 −E−1F(M/E)−1

−(M/E)−1GE−1 (M/E)−1

)
(4.105)

4.3.4.2 The matrix inversion lemma

We now derive some useful corollaries of the above result.

Corollary 4.3.1 (Matrix inversion lemma). Consider a general partitioned matrixM =

(
E F
G H

)
,

where we assume E and H are invertible. We have

(E− FH−1G)−1 = E−1 +E−1F(H−GE−1F)−1GE−1 (4.106)

(E− FH−1G)−1FH−1 = E−1F(H−GE−1F)−1 (4.107)

|E− FH−1G| = |H−GE−1F||H−1||E| (4.108)
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The first two equations are s known as the matrix inversion lemma or the Sherman-
Morrison-Woodbury formula. The third equation is known as the matrix determinant
lemma. A typical application in machine learning/ statistics is the following. Let E = Σ
be a N × N diagonal matrix, let F = GT = X of size N × D, where N � D, and let
H−1 = −I. Then we have

(Σ+XXT )−1 = Σ−1 −Σ−1X(I+XTΣ−1X)−1XTΣ−1 (4.109)

The LHS takes O(N3) time to compute, the RHS takes time O(D3) to compute.
Another application concerns computing a rank one update of an inverse matrix. Let

H = −1 (a scalar), F = u (a column vector), and G = vT (a row vector). Then we have

(E+ uvT )−1 = E−1 +E−1u(−1− vTE−1u)−1vTE−1 (4.110)

= E−1 − E−1uvTE−1

1 + vTE−1u
(4.111)

This is useful when we incrementally add a data vector to a design matrix, and want to update
our sufficient statistics. (One can derive an analogous formula for removing a data vector.)

Proof. To prove Equation 4.106, we simply equate the top left block of Equation 4.93 and Equa-
tion 4.94. To prove Equation 4.107, we simple equate the top right blocks of Equations 4.93 and
4.94. The proof of Equation 4.108 is left as an exercise.

4.3.4.3 Proof of Gaussian conditioning formulas

We can now return to our original goal, which is to derive Equation 4.69. Let us factor the joint
p(x1,x2) as p(x2)p(x1|x2) as follows:

E = exp

{
−1

2

(
x1 − μ1

x2 − μ2

)T (
Σ11 Σ12

Σ21 Σ22

)−1(
x1 − μ1

x2 − μ2

)}
(4.112)

Using Equation 4.102 the above exponent becomes

E = exp

{
−1

2

(
x1 − μ1

x2 − μ2

)T (
I 0

−Σ−1
22 Σ21 I

)(
(Σ/Σ22)

−1 0

0 Σ−1
22

)
(4.113)

×
(
I −Σ12Σ

−1
22

0 I

)(
x1 − μ1

x2 − μ2

)}
(4.114)

= exp

{
−1

2
(x1 − μ1 −Σ12Σ

−1
22 (x2 − μ2))

T (Σ/Σ22)
−1 (4.115)

(x1 − μ1 −Σ12Σ
−1
22 (x2 − μ2))

}× exp

{
−1

2
(x2 − μ2)

TΣ−1
22 (x2 − μ2)

}
(4.116)

This is of the form

exp(quadratic form in x1,x2)× exp(quadratic form in x2) (4.117)
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Hence we have successfully factorized the joint as

p(x1,x2) = p(x1|x2)p(x2) (4.118)

= N (x1|μ1|2,Σ1|2)N (x2|μ2,Σ22) (4.119)

where the parameters of the conditional distribution can be read off from the above equations
using

μ1|2 = μ1 +Σ12Σ
−1
22 (x2 − μ2) (4.120)

Σ1|2 = Σ/Σ22 = Σ11 −Σ12Σ
−1
22 Σ21 (4.121)

We can also use the fact that |M| = |M/H||H| to check the normalization constants are
correct:

(2π)(d1+d2)/2|Σ| 12 = (2π)(d1+d2)/2(|Σ/Σ22| |Σ22|) 12 (4.122)

= (2π)d1/2|Σ/Σ22| 12 (2π)d2/2|Σ22| 12 (4.123)

where d1 = dim(x1) and d2 = dim(x2).
We leave the proof of the other forms of the result in Equation 4.69 as an exercise.

4.4 Linear Gaussian systems

Suppose we have two variables, x and y. Let x ∈ R
Dx be a hidden variable, and y ∈ R

Dy be
a noisy observation of x. Let us assume we have the following prior and likelihood:

p(x) = N (x|μx,Σx)

p(y|x) = N (y|Ax+ b,Σy)
(4.124)

where A is a matrix of size Dy ×Dx. This is an example of a linear Gaussian system. We
can represent this schematically as x → y, meaning x generates y. In this section, we show
how to “invert the arrow”, that is, how to infer x from y. We state the result below, then give
several examples, and finally we derive the result. We will see many more applications of these
results in later chapters.

4.4.1 Statement of the result

Theorem 4.4.1 (Bayes rule for linear Gaussian systems). Given a linear Gaussian system, as in
Equation 4.124, the posterior p(x|y) is given by the following:

p(x|y) = N (x|μx|y,Σx|y)

Σ−1
x|y = Σ−1

x +ATΣ−1
y A

μx|y = Σx|y[ATΣ−1
y (y − b) +Σ−1

x μx]

(4.125)
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In addition, the normalization constant p(y) is given by

p(y) = N (y|Aμx + b,Σy +AΣxA
T ) (4.126)

For the proof, see Section 4.4.3.

4.4.2 Examples

In this section, we give some example applications of the above result.

4.4.2.1 Inferring an unknown scalar from noisy measurements

Suppose we make N noisy measurements yi of some underlying quantity x; let us assume the
measurement noise has fixed precision λy = 1/σ2, so the likelihood is

p(yi|x) = N (yi|x, λ−1
y ) (4.127)

Now let us use a Gaussian prior for the value of the unknown source:

p(x) = N (x|μ0, λ
−1
0 ) (4.128)

We want to compute p(x|y1, . . . , yN , σ2). We can convert this to a form that lets us apply
Bayes rule for Gaussians by defining y = (y1, . . . , yN ), A = 1T

N (an 1 ×N row vector of 1’s),
and Σ−1

y = diag(λyI). Then we get

p(x|y) = N (x|μN , λ−1
N ) (4.129)

λN = λ0 +Nλy (4.130)

μN =
Nλyy + λ0μ0

λN
=

Nλy

Nλy + λ0
y +

λ0

Nλy + λ0
μ0 (4.131)

These equations are quite intuitive: the posterior precision λN is the prior precision λ0 plus N
units of measurement precision λy . Also, the posterior mean μN is a convex combination of
the MLE y and the prior mean μ0. This makes it clear that the posterior mean is a compromise
between the MLE and the prior. If the prior is weak relative to the signal strength (λ0 is
small relative to λy ), we put more weight on the MLE. If the prior is strong relative to the
signal strength (λ0 is large relative to λy ), we put more weight on the prior. This is illustrated
in Figure 4.12, which is very similar to the analogous results for the beta-binomial model in
Figure 3.6.

Note that the posterior mean is written in terms of Nλyy, so having N measurements each
of precision λy is like having one measurement with value y and precision Nλy .

We can rewrite the results in terms of the posterior variance, rather than posterior precision,
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Figure 4.12 Inference about x given a noisy observation y = 3. (a) Strong prior N (0, 1). The posterior
mean is “shrunk” towards the prior mean, which is 0. (a) Weak prior N (0, 5). The posterior mean is
similar to the MLE. Figure generated by gaussInferParamsMean1d.

as follows:

p(x|D, σ2) = N (x|μN , τ2N ) (4.132)

τ2N =
1

N
σ2 + 1

τ20

=
σ2τ20

Nτ20 + σ2
(4.133)

μN = τ2N

(
μ0

τ20
+

Ny

σ2

)
=

σ2

Nτ20 + σ2
μ0 +

Nτ20
Nτ20 + σ2

y (4.134)

where τ20 = 1/λ0 is the prior variance and τ2N = 1/λN is the posterior variance.
We can also compute the posterior sequentially, by updating after each observation. If

N = 1, we can rewrite the posterior after seeing a single observation as follows (where we
define Σy = σ2, Σ0 = τ20 and Σ1 = τ21 to be the variances of the likelihood, prior and
posterior):

p(x|y) = N (x|μ1,Σ1) (4.135)

Σ1 =

(
1

Σ0
+

1

Σy

)−1

=
ΣyΣ0

Σ0 +Σy
(4.136)

μ1 = Σ1

(
μ0

Σ0
+

y

Σy

)
(4.137)

We can rewrite the posterior mean in 3 different ways:

μ1 =
Σy

Σy +Σ0
μ0 +

Σ0

Σy +Σ0
y (4.138)

= μ0 + (y − μ0)
Σ0

Σy +Σ0
(4.139)

= y − (y − μ0)
Σy

Σy +Σ0
(4.140)
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The first equation is a convex combination of the prior and the data. The second equation is the
prior mean adjusted towards the data. The third equation is the data adjusted towards the prior
mean; this is called shrinkage. These are all equivalent ways of expressing the tradeoff between
likelihood and prior. If Σ0 is small relative to ΣY , corresponding to a strong prior, the amount
of shrinkage is large (see Figure 4.12(a)), whereas if Σ0 is large relative to Σy , corresponding to
a weak prior, the amount of shrinkage is small (see Figure 4.12(b)).

Another way to quantify the amount of shrinkage is in terms of the signal-to-noise ratio,
which is defined as follows:

SNR �
E
[
X2
]

E [ε2]
=

Σ0 + μ2
0

Σy
(4.141)

where x ∼ N (μ0,Σ0) is the true signal, y = x + ε is the observed signal, and ε ∼ N (0,Σy)
is the noise term.

4.4.2.2 Inferring an unknown vector from noisy measurements

Now consider N vector-valued observations, yi ∼ N (x,Σy), and a Gaussian prior, x ∼
N (μ0,Σ0). Setting A = I, b = 0, and using y for the effective observation with precision
NΣ−1

y , we have

p(x|y1, . . . ,yN ) = N (x|μN ,ΣN ) (4.142)

Σ−1
N = Σ−1

0 +NΣ−1
y (4.143)

μN = ΣN (Σ−1
y (Ny) +Σ−1

0 μ0) (4.144)

See Figure 4.13 for a 2d example. We can think of x as representing the true, but unknown,
location of an object in 2d space, such as a missile or airplane, and the yi as being noisy
observations, such as radar “blips”. As we receive more blips, we are better able to localize the
source. In Section 18.3.1, we will see how to extend this example to track moving objects using
the famous Kalman filter algorithm.

Now suppose we have multiple measuring devices, and we want to combine them together;
this is known as sensor fusion. If we have multiple observations with different covariances (cor-
responding to sensors with different reliabilities), the posterior will be an appropriate weighted
average of the data. Consider the example in Figure 4.14. We use an uninformative prior on x,
namely p(x) = N (μ0,Σ0) = N (0, 1010I2). We get 2 noisy observations, y1 ∼ N (x,Σy,1)
and y2 ∼ N (x,Σy,2). We then compute p(x|y1,y2).

In Figure 4.14(a), we set Σy,1 = Σy,2 = 0.01I2, so both sensors are equally reliable. In this
case, the posterior mean is half way between the two observations, y1 and y2. In Figure 4.14(b),
we set Σy,1 = 0.05I2 and Σy,2 = 0.01I2, so sensor 2 is more reliable than sensor 1. In this
case, the posterior mean is closer to y2. In Figure 4.14(c), we set

Σy,1 = 0.01

(
10 1
1 1

)
, Σy,2 = 0.01

(
1 1
1 10

)
(4.145)

so sensor 1 is more reliable in the y2 component (vertical direction), and sensor 2 is more
reliable in the y1 component (horizontal direction). In this case, the posterior mean uses y1’s
vertical component and y2’s horizontal component.
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Figure 4.13 Illustration of Bayesian inference for the mean of a 2d Gaussian. (a) The data is generated
from yi ∼ N (x,Σy), where x = [0.5, 0.5]T and Σy = 0.1[2, 1; 1, 1]). We assume the sensor noise
covariance Σy is known but x is unknown. The black cross represents x. (b) The prior is p(x) =
N (x|0, 0.1I2). (c) We show the posterior after 10 data points have been observed. Figure generated by
gaussInferParamsMean2d.
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Figure 4.14 We observe y1 = (0,−1) (red cross) and y2 = (1, 0) (green cross) and infer E(μ|y1,y2,θ)
(black cross). (a) Equally reliable sensors, so the posterior mean estimate is in between the two circles.
(b) Sensor 2 is more reliable, so the estimate shifts more towards the green circle. (c) Sensor 1 is more
reliable in the vertical direction, Sensor 2 is more reliable in the horizontal direction. The estimate is an
appropriate combination of the two measurements. Figure generated by sensorFusion2d.

Note that this technique crucially relies on modeling our uncertainty of each sensor; comput-
ing an unweighted average would give the wrong result. However, we have assumed the sensor
precisions are known. When they are not, we should model out uncertainty about Σ1 and Σ2

as well. See Section 4.6.4 for details.

4.4.2.3 Interpolating noisy data

We now revisit the example of Section 4.3.2.2. This time we no longer assume noise-free
observations. Instead, let us assume that we obtain N noisy observations yi; without loss
of generality, assume these correspond to x1, . . . , xN . We can model this setup as a linear
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Gaussian system:

y = Ax+ ε (4.146)

where ε ∼ N (0,Σy), Σy = σ2I, σ2 is the observation noise, and A is a N × D projection
matrix that selects out the observed elements. For example, if N = 2 and D = 4 we have

A =

(
1 0 0 0
0 1 0 0

)
(4.147)

Using the same improper prior as before, Σx = (LTL)−1, we can easily compute the posterior
mean and variance. In Figure 4.15, we plot the posterior mean, posterior variance, and some
posterior samples. Now we see that the prior precision λ effects the posterior mean as well as
the posterior variance. In particular, for a strong prior (large λ), the estimate is very smooth, and
the uncertainty is low. but for a weak prior (small λ), the estimate is wiggly, and the uncertainty
(away from the data) is high.

The posterior mean can also be computed by solving the following optimization problem:

min
x

1

2σ2

N∑
i=1

(xi − yi)
2 +

λ

2

D∑
j=1

[
(xj − xj−1)

2
+ (xj − xj+1)

2
]

(4.148)

where we have defined x0 = x1 and xD+1 = xD for notational simplicity. We recognize this
as a discrete approximation to the following problem:

min
f

1

2σ2

∫
(f(t)− y(t))2dt+

λ

2

∫
[f ′(t)]2dt (4.149)

where f ′(t) is the first derivative of f . The first term measures fit to the data, and the second
term penalizes functions that are “too wiggly”. This is an example of Tikhonov regularization,
which is a popular approach to functional data analysis. See Chapter 15 for more sophisticated
approaches, which enforce higher order smoothness (so the resulting samples look less “jagged”).

4.4.3 Proof of the result *

We now derive Equation 4.125. The basic idea is to derive the joint distribution, p(x,y) =
p(x)p(y|x), and then to use the results from Section 4.3.1 for computing p(x|y).

In more detail, we proceed as follows. The log of the joint distribution is as follows (dropping
irrelevant constants):

log p(x,y) = −1

2
(x− μx)

TΣ−1
x (x− μx)−

1

2
(y −Ax− b)TΣ−1

y (y −Ax− b) (4.150)

This is clearly a joint Gaussian distribution, since it is the exponential of a quadratic form.
Expanding out the quadratic terms involving x and y, and ignoring linear and constant terms,

we have

Q = −1

2
xTΣ−1

x x− 1

2
yTΣ−1

y y − 1

2
(Ax)TΣ−1

y (Ax) + yTΣ−1
y Ax (4.151)

= −1

2

(
x
y

)T (
Σ−1

x +ATΣ−1
y A −ATΣ−1

y

−Σ−1
y A Σ−1

y

)(
x
y

)
(4.152)

= −1

2

(
x
y

)T

Σ−1

(
x
y

)
(4.153)
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Figure 4.15 Interpolating noisy data (noise variance σ2 = 1) using a Gaussian with prior precision λ. (a)
λ = 30. (b) λ = 0.01. See also Figure 4.10. Based on Figure 7.1 of (Calvetti and Somersalo 2007). Figure
generated by gaussInterpNoisyDemo. See also splineBasisDemo.

where the precision matrix of the joint is defined as

Σ−1 =

(
Σ−1

x +ATΣ−1
y A −ATΣ−1

y

−Σ−1
y A Σ−1

y

)
� Λ =

(
Λxx Λxy

Λyx Λyy

)
(4.154)

From Equation 4.69, and using the fact that μy = Aμx + b, we have

p(x|y) = N (μx|y,Σx|y) (4.155)

Σx|y = Λ−1
xx = (Σ−1

x +ATΣ−1
y A)−1 (4.156)

μx|y = Σx|y
(
Λxxμx −Λxy(y − μy)

)
(4.157)

= Σx|y
(
Σ−1

x μ+ATΣ−1
y (y − b)

)
(4.158)

4.5 Digression: The Wishart distribution *

The Wishart distribution is the generalization of the Gamma distribution to positive definite
matrices. Press (Press 2005, p107) has said “The Wishart distribution ranks next to the (multi-
variate) normal distribution in order of importance and usefuleness in multivariate statistics”.
We will mostly use it to model our uncertainty in covariance matrices, Σ, or their inverses,
Λ = Σ−1.

The pdf of the Wishart is defined as follows:

Wi(Λ|S, ν) =
1

ZWi
|Λ|(ν−D−1)/2 exp

(
−1

2
tr(ΛS−1)

)
(4.159)

Here ν is called the “degrees of freedom” and S is the “scale matrix”. (We shall get more
intuition for these parameters shortly.) The normalization constant for this distribution (which
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requires integrating over all symmetric pd matrices) is the following formidable expression

ZWi = 2νD/2ΓD(ν/2)|S|ν/2 (4.160)

where ΓD(a) is the multivariate gamma function:

ΓD(x) = πD(D−1)/4
D∏
i=1

Γ (x+ (1− i)/2) (4.161)

Hence Γ1(a) = Γ(a) and

ΓD(ν0/2) =

D∏
i=1

Γ(
ν0 + 1− i

2
) (4.162)

The normalization constant only exists (and hence the pdf is only well defined) if ν > D − 1.
There is a connection between the Wishart distribution and the Gaussian. In particular,

let xi ∼ N (0,Σ). Then the scatter matrix S =
∑N

i=1 xix
T
i has a Wishart distribution:

S ∼ Wi(Σ, 1). Hence E [S] = NΣ. More generally, one can show that the mean and mode of
Wi(S, ν) are given by

mean = νS, mode = (ν −D − 1)S (4.163)

where the mode only exists if ν > D + 1.
If D = 1, the Wishart reduces to the Gamma distribution:

Wi(λ|s−1, ν) = Ga(λ|ν
2
,
s

2
) (4.164)

4.5.1 Inverse Wishart distribution

Recall that we showed (Exercise 2.10) that if λ ∼ Ga(a, b), then that 1
λ ∼ IG(a, b). Similarly,

if Σ−1 ∼ Wi(S, ν) then Σ ∼ IW(S−1, ν + D + 1), where IW is the inverse Wishart, the
multidimensional generalization of the inverse Gamma. It is defined as follows, for ν > D − 1
and S 
 0:

IW(Σ|S, ν) =
1

ZIW
|Σ|−(ν+D+1)/2 exp

(
−1

2
tr(S−1Σ−1)

)
(4.165)

ZIW = |S|−ν/22νD/2ΓD(ν/2) (4.166)

One can show that the distribution has these properties

mean =
S−1

ν −D − 1
, mode =

S−1

ν +D + 1
(4.167)

If D = 1, this reduces to the inverse Gamma:

IW(σ2|S−1, ν) = IG(σ2|ν/2, S/2) (4.168)
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Figure 4.16 Visualization of the Wishart distribution. Left: Some samples from the Wishart distribution,
Σ ∼ Wi(S, ν), where S = [3.1653,−0.0262;−0.0262, 0.6477] and ν = 3. Right: Plots of the marginals
(which are Gamma), and the approximate (sample-based) marginal on the correlation coefficient. If ν = 3
there is a lot of uncertainty about the value of the correlation coefficient ρ (see the almost uniform
distribution on [−1, 1]). The sampled matrices are highly variable, and some are nearly singular. As ν
increases, the sampled matrices are more concentrated on the prior S. Figure generated by wiPlotDemo.

4.5.2 Visualizing the Wishart distribution *

Since the Wishart is a distribution over matrices, it is hard to plot as a density function. However,
we can easily sample from it, and in the 2d case, we can use the eigenvectors of the resulting
matrix to define an ellipse, as explained in Section 4.1.2. See Figure 4.16 for some examples.

For higher dimensional matrices, we can plot marginals of the distribution. The diagonals of
a Wishart distributed matrix have Gamma distributions, so are easy to plot. It is hard in general
to work out the distribution of the off-diagonal elements, but we can sample matrices from
the distribution, and then compute the distribution empirically. In particular, we can convert
each sampled matrix to a correlation matrix, and thus compute a Monte Carlo approximation
(Section 2.7) to the expected correlation coefficients:

E [Rij ] ≈ 1

S

S∑
s=1

R(Σ(s))ij (4.169)

where Σ(s) ∼ Wi(Σ, ν) and R(Σ) converts matrix Σ into a correlation matrix:

Rij =
Σij√
ΣiiΣjj

(4.170)

We can then use kernel density estimation (Section 14.7.2) to produce a smooth approximation
to the univariate density E [Rij ] for plotting purposes. See Figure 4.16 for some examples.

4.6 Inferring the parameters of an MVN

So far, we have discussed inference in a Gaussian assuming the parameters θ = (μ,Σ) are
known. We now discuss how to infer the parameters themselves. We will assume the data has
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the form xi ∼ N (μ,Σ) for i = 1 : N and is fully observed, so we have no missing data (see
Section 11.6.1 for how to estimate parameters of an MVN in the presence of missing values). To
simplify the presentation, we derive the posterior in three parts: first we compute p(μ|D,Σ);
then we compute p(Σ|D,μ); finally we compute the joint p(μ,Σ|D).

4.6.1 Posterior distribution of μ

We have discussed how to compute the MLE for μ; we now discuss how to compute its posterior,
which is useful for modeling our uncertainty about its value.

The likelihood has the form

p(D|μ) = N (x|μ, 1

N
Σ) (4.171)

For simplicity, we will use a conjugate prior, which in this case is a Gaussian. In particular, if
p(μ) = N (μ|m0,V0) then we can derive a Gaussian posterior for μ based on the results in
Section 4.4.2.2. We get

p(μ|D,Σ) = N (μ|mN ,VN ) (4.172)

V−1
N = V−1

0 +NΣ−1 (4.173)

mN = VN (Σ−1(Nx) +V−1
0 m0) (4.174)

This is exactly the same process as inferring the location of an object based on noisy radar
“blips”, except now we are inferring the mean of a distribution based on noisy samples. (To a
Bayesian, there is no difference between uncertainty about parameters and uncertainty about
anything else.)

We can model an uninformative prior by setting V0 = ∞I. In this case we have p(μ|D,Σ) =
N (x, 1

NΣ), so the posterior mean is equal to the MLE. We also see that the posterior variance
goes down as 1/N , which is a standard result from frequentist statistics.

4.6.2 Posterior distribution of Σ *

We now discuss how to compute p(Σ|D,μ). The likelihood has the form

p(D|μ,Σ) ∝ |Σ|−N2 exp

(
−1

2
tr(SμΣ

−1)

)
(4.175)

The corresponding conjugate prior is known as the inverse Wishart distribution (Section 4.5.1).
Recall that this has the following pdf:

IW(Σ|S−1
0 , ν0) ∝ |Σ|−(ν0+D+1)/2 exp

(
−1

2
tr(S0Σ

−1)

)
(4.176)

Here ν0 > D − 1 is the degrees of freedom (dof), and S0 is a symmetric pd matrix. We see
that S−1

0 plays the role of the prior scatter matrix, and N0 � ν0 +D + 1 controls the strength
of the prior, and hence plays a role analogous to the sample size N .
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Figure 4.17 Estimating a covariance matrix in D = 50 dimensions using N ∈ {100, 50, 25} samples.
We plot the eigenvalues in descending order for the true covariance matrix (solid black), the MLE (dotted
blue) and the MAP estimate (dashed red), using Equation 4.184 with λ = 0.9. We also list the condition
number of each matrix in the legend. Based on Figure 1 of (Schaefer and Strimmer 2005). Figure generated
by shrinkcovDemo.

Multiplying the likelihood and prior we find that the posterior is also inverse Wishart:

p(Σ|D,μ) ∝ |Σ|−N2 exp

(
−1

2
tr(Σ−1Sμ)

)
|Σ|−(ν0+D+1)/2

exp

(
−1

2
tr(Σ−1S0)

)
(4.177)

= |Σ|−N+(ν0+D+1)
2 exp

(
−1

2
tr
[
Σ−1(Sμ + S0)

])
(4.178)

= IW(Σ|SN , νN ) (4.179)

νN = ν0 +N (4.180)

S−1
N = S0 + Sμ (4.181)

In words, this says that the posterior strength νN is the prior strength ν0 plus the number of
observations N , and the posterior scatter matrix SN is the prior scatter matrix S0 plus the data
scatter matrix Sμ.

4.6.2.1 MAP estimation

We see from Equation 4.7 that Σ̂mle is a rank min(N,D) matrix. If N < D, this is not
full rank, and hence will be uninvertible. And even if N > D, it may be the case that Σ̂ is
ill-conditioned (meaning it is nearly singular).

To solve these problems, we can use the posterior mode (or mean). One can show (using
techniques analogous to the derivation of the MLE) that the MAP estimate is given by

Σ̂map =
SN

νN +D + 1
=

S0 + Sμ

N0 +N
(4.182)

If we use an improper uniform prior, corresponding to N0 = 0 and S0 = 0, we recover the
MLE.
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Let us now consider the use of a proper informative prior, which is necessary whenever D/N
is large (say bigger than 0.1). Let μ = x, so Sμ = Sx. Then we can rewrite the MAP estimate
as a convex combination of the prior mode and the MLE. To see this, let Σ0 � S0

N0
be the prior

mode. Then the posterior mode can be rewritten as

Σ̂map =
S0 + Sx

N0 +N
=

N0

N0 +N

S0

N0
+

N

N0 +N

S

N
= λΣ0 + (1− λ)Σ̂mle (4.183)

where λ = N0

N0+N , controls the amount of shrinkage towards the prior.
This begs the question: where do the parameters of the prior come from? It is common to

set λ by cross validation. Alternatively, we can use the closed-form formula provided in (Ledoit
and Wolf 2004b,a; Schaefer and Strimmer 2005), which is the optimal frequentist estimate if we
use squared loss. This is arguably not the most natural loss function for covariance matrices
(because it ignores the postive definite constraint), but it results in a simple estimator, which
is implemented in the PMTK function shrinkcov. We discuss Bayesian ways of estimating λ
later.

As for the prior covariance matrix, S0, it is common to use the following (data dependent)
prior: S0 = diag(Σ̂mle). In this case, the MAP estimate is given by

Σ̂map(i, j) =

{
Σ̂mle(i, j) if i = j

(1− λ)Σ̂mle(i, j) otherwise
(4.184)

Thus we see that the diagonal entries are equal to their ML estimates, and the off diago-
nal elements are “shrunk” somewhat towards 0. This technique is therefore called shrinkage
estimation, or regularized estimation.

The benefits of MAP estimation are illustrated in Figure 4.17. We consider fitting a 50 dimen-
sional Gaussian to N = 100, N = 50 and N = 25 data points. We see that the MAP estimate
is always well-conditioned, unlike the MLE. In particular, we see that the eigenvalue spectrum
of the MAP estimate is much closer to that of the true matrix than the MLE’s. The eigenvectors,
however, are unaffected.

The importance of regularizing the estimate of Σ will become apparent in later chapters,
when we consider fitting covariance matrices to high dimensional data.

4.6.2.2 Univariate posterior

In the 1d case, the likelihood has the form

p(D|σ2) ∝ (σ2)−N/2 exp

(
− 1

2σ2

N∑
i=1

(xi − μ)2

)
(4.185)

The standard conjugate prior is the inverse Gamma distribution, which is just the scalar version
of the inverse Wishart:

IG(σ2|a0, b0) ∝ (σ2)−(a0+1) exp(− b0
σ2

) (4.186)
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Figure 4.18 Sequential updating of the posterior for σ2 starting from an uninformative prior. The data
was generated from a Gaussian with known mean μ = 5 and unknown variance σ2 = 10. Figure generated
by gaussSeqUpdateSigma1D.

Multiplying the likelihood and the prior, we see that the posterior is also IG:

p(σ2|D) = IG(σ2|aN , bN ) (4.187)

aN = a0 +N/2 (4.188)

bN = b0 +
1

2

N∑
i=1

(xi − μ)2 (4.189)

See Figure 4.18 for an illustration.
The form of the posterior is not quite as pretty as the multivariate case, because of the

factors of 1
2 . This arises because IW(σ2|s0, ν0) = IG(σ2| s02 , ν0

2 ). Another problem with using
the IG(a0, b0) distribution is that the strength of the prior is encoded in both a0 and b0.
To avoid both of these problems, it is common (in the statistics literature) to use an alternative
parameterization of the IG distribution, known as the (scaled) inverse chi-squared distribution.
This is defined as follows:

χ−2(σ2|ν0, σ2
0) = IG(σ2|ν0

2
,
ν0σ

2
0

2
) ∝ (σ2)−ν0/2−1 exp(−ν0σ

2
0

2σ2
) (4.190)

Here ν0 controls the strength of the prior, and σ2
0 encodes the value of the prior. With this

prior, the posterior becomes

p(σ2|D, μ) = χ−2(σ2|νN , σ2
N ) (4.191)

νN = ν0 +N (4.192)

σ2
N =

ν0σ
2
0 +
∑N

i=1(xi − μ)2

νN
(4.193)

We see that the posterior dof νN is the prior dof ν0 plus N , and the posterior sum of squares
νNσ2

N is the prior sum of squares ν0σ
2
0 plus the data sum of squares.

We can emulate an uninformative prior, p(σ2) ∝ σ−2, by setting ν0 = 0, which makes
intuitive sense (since it corresponds to a zero virtual sample size).
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4.6.3 Posterior distribution of μ and Σ *

We now discuss how to compute p(μ,Σ|D). These results are a bit complex, but will prove
useful later on in this book. Feel free to skip this section on a first reading.

4.6.3.1 Likelihood

The likelihood is given by

p(D|μ,Σ) = (2π)−ND/2|Σ|−N2 exp

(
−1

2

N∑
i=1

(xi − μ)TΣ−1(xi − μ)

)
(4.194)

Now one can show that

N∑
i=1

(xi − μ)TΣ−1(xi − μ) = tr(Σ−1Sx) +N(x− μ)TΣ−1(x− μ) (4.195)

Hence we can rewrite the likelihood as follows:

p(D|μ,Σ) = (2π)−ND/2|Σ|−N2 exp

(
−N

2
(μ− x)TΣ−1(μ− x)

)
(4.196)

exp

(
−N

2
tr(Σ−1Sx)

)
(4.197)

We will use this form below.

4.6.3.2 Prior

The obvious prior to use is the following

p(μ,Σ) = N (μ|m0,V0)IW(Σ|S0, ν0) (4.198)

Unfortunately, this is not conjugate to the likelihood. To see why, note that μ and Σ appear
together in a non-factorized way in the likelihood; hence they will also be coupled together in
the posterior.

The above prior is sometimes called semi-conjugate or conditionally conjugate, since both
conditionals, p(μ|Σ) and p(Σ|μ), are individually conjugate. To create a full conjugate prior,
we need to use a prior where μ and Σ are dependent on each other. We will use a joint
distribution of the form

p(μ,Σ) = p(Σ)p(μ|Σ) (4.199)

Looking at the form of the likelihood equation, Equation 4.197, we see that a natural conjugate
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prior has the form of a Normal-inverse-wishart or NIW distribution, defined as follows:

NIW(μ,Σ|m0, κ0, ν0,S0) � (4.200)

N (μ|m0,
1

κ0
Σ)× IW(Σ|S0, ν0) (4.201)

=
1

ZNIW
|Σ|− 1

2 exp
(
−κ0

2
(μ−m0)

TΣ−1(μ−m0)
)

(4.202)

×|Σ|− ν0+D+1
2 exp

(
−1

2
tr(Σ−1S0)

)
(4.203)

=
1

ZNIW
|Σ|− ν0+D+2

2 (4.204)

× exp

(
−κ0

2
(μ−m0)

TΣ−1(μ−m0)− 1

2
tr(Σ−1S0)

)
(4.205)

ZNIW = 2v0D/2ΓD(ν0/2)(2π/κ0)
D/2|S0|−ν0/2 (4.206)

where ΓD(a) is the multivariate Gamma function.
The parameters of the NIW can be interpreted as follows: m0 is our prior mean for μ, and

κ0 is how strongly we believe this prior; and S0 is (proportional to) our prior mean for Σ, and
ν0 is how strongly we believe this prior.3

One can show (Minka 2000f) that the (improper) uninformative prior has the form

lim
k→0

N (μ|m0,Σ/k)IW(Σ|S0, k) ∝ |2πΣ|− 1
2 |Σ|−(D+1)/2 (4.207)

∝ |Σ|−(D2 +1) ∝ NIW(μ,Σ|0, 0, 0, 0I) (4.208)

In practice, it is often better to use a weakly informative data-dependent prior. A common
choice (see e.g., (Chipman et al. 2001, p81), (Fraley and Raftery 2007, p6)) is to use S0 =
diag(Sx)/N , and ν0 = D+ 2, to ensure E [Σ] = S0, and to set μ0 = x and κ0 to some small
number, such as 0.01.

3. Although this prior has four parameters, there are really only three free parameters, since our uncertainty in the
mean is proportional to the variance. In particular, if we believe that the variance is large, then our uncertainty in μ
must be large too. This makes sense intuitively, since if the data has large spread, it may be hard to pin down its mean.
See also Exercise 9.1, where we will see the three free parameters more explicitly. If we want separate “control” over our
confidence in μ and Σ, we must use a semi-conjugate prior.
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4.6.3.3 Posterior

The posterior can be shown (Exercise 4.11) to be NIW with updated parameters:

p(μ,Σ|D) = NIW(μ,Σ|mN , κN , νN ,SN ) (4.209)

mN =
κ0m0 +Nx

κN
=

κ0

κ0 +N
m0 +

N

κ0 +N
x (4.210)

κN = κ0 +N (4.211)

νN = ν0 +N (4.212)

SN = S0 + Sx +
κ0N

κ0 +N
(x−m0)(x−m0)

T (4.213)

= S0 + S+ κ0m0m
T
0 − κNmNmT

N (4.214)

where we have defined S �
∑N

i=1 xix
T
i as the uncentered sum-of-squares matrix (this is easier

to update incrementally than the centered version).
This result is actually quite intuitive: the posterior mean is a convex combination of the prior

mean and the MLE, with “strength” κ0 + N ; and the posterior scatter matrix SN is the prior
scatter matrix S0 plus the empirical scatter matrix Sx plus an extra term due to the uncertainty
in the mean (which creates its own virtual scatter matrix).

4.6.3.4 Posterior mode

The mode of the joint distribution has the following form:

argmax p(μ,Σ|D) = (mN ,
SN

νN +D + 2
) (4.215)

If we set κ0 = 0, this reduces to

argmax p(μ,Σ|D) = (x,
S0 + Sx

ν0 +N +D + 2
) (4.216)

The corresponding estimate Σ̂ is almost the same as Equation 4.183, but differs by 1 in the
denominator, because this is the mode of the joint, not the mode of the marginal.

4.6.3.5 Posterior marginals

The posterior marginal for Σ is simply

p(Σ|D) =

∫
p(μ,Σ|D)dμ = IW(Σ|SN , νN ) (4.217)

The mode and mean of this marginal are given by

Σ̂map =
SN

νN +D + 1
, E [Σ] =

SN

νN −D − 1
(4.218)

One can show that the posterior marginal for μ has a multivariate Student T distribution:

p(μ|D) =

∫
p(μ,Σ|D)dΣ = T (μ|mN ,

1

κN (νN −D + 1)
SN , νN −D + 1) (4.219)

This follows from the fact that the Student distribution can be represented as a scaled mixture
of Gaussians (see Equation 11.61).
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Figure 4.19 The NIχ2(m0, κ0, ν0, σ
2
0) distribution. m0 is the prior mean and κ0 is how strongly we

believe this; σ2
0 is the prior variance and ν0 is how strongly we believe this. (a) m0 = 0, κ0 = 1, ν0 =

1, σ2
0 = 1. Notice that the contour plot (underneath the surface) is shaped like a “squashed egg”. (b) We

increase the strength of our belief in the mean, so it gets narrower: m0 = 0, κ0 = 5, ν0 = 1, σ2
0 = 1. (c)

We increase the strength of our belief in the variance, so it gets narrower: m0 = 0, κ0 = 1, ν0 = 5, σ2
0 =

1. Figure generated by NIXdemo2.

4.6.3.6 Posterior predictive

The posterior predictive is given by

p(x|D) =
p(x,D)

p(D)
(4.220)

so it can be easily evaluated in terms of a ratio of marginal likelihoods.
It turns out that this ratio has the form of a multivariate Student-T distribution:

p(x|D) =

∫ ∫
N (x|μ,Σ)NIW(μ,Σ|mN , κN , νN ,SN )dμdΣ (4.221)

= T (x|mN ,
κN + 1

κN (νN −D + 1)
SN , νN −D + 1) (4.222)

The Student-T has wider tails than a Gaussian, which takes into account the fact that Σ is
unknown. However, this rapidly becomes Gaussian-like.

4.6.3.7 Posterior for scalar data

We now specialise the above results to the case where xi is 1d. These results are widely used
in the statistics literature. As in Section 4.6.2.2, it is conventional not to use the normal inverse
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Wishart, but to use the normal inverse chi-squared or NIX distribution, defined by

NIχ2(μ, σ2|m0, κ0, ν0, σ
2
0) � N (μ|m0, σ

2/κ0) χ
−2(σ2|ν0, σ2

0) (4.223)

∝ (
1

σ2
)(ν0+3)/2 exp

(
−ν0σ

2
0 + κ0(μ−m0)

2

2σ2

)
(4.224)

See Figure 4.19 for some plots. Along the μ axis, the distribution is shaped like a Gaussian, and
along the σ2 axis, the distribution is shaped like a χ−2; the contours of the joint density have
a “squashed egg” appearance. Interestingly, we see that the contours for μ are more peaked
for small values of σ2, which makes sense, since if the data is low variance, we will be able to
estimate its mean more reliably.

One can show that the posterior is given by

p(μ, σ2|D) = NIχ2(μ, σ2|mN , κN , νN , σ2
N ) (4.225)

mN =
κ0m0 +Nx

κN
(4.226)

κN = κ0 +N (4.227)

νN = ν0 +N (4.228)

νNσ2
N = ν0σ

2
0 +

N∑
i=1

(xi − x)2 +
Nκ0

κ0 +N
(m0 − x)2 (4.229)

The posterior marginal for σ2 is just

p(σ2|D) =

∫
p(μ, σ2|D)dμ = χ−2(σ2|νN , σ2

N ) (4.230)

with the posterior mean given by E
[
σ2|D] = νN

νN−2σ
2
N .

The posterior marginal for μ has a Student T distribution, which follows from the scale
mixture representation of the student:

p(μ|D) =

∫
p(μ, σ2|D)dσ2 = T (μ|mN , σ2

N/κN , νN ) (4.231)

with the posterior mean given by E [μ|D] = mN .
Let us see how these results look if we use the following uninformative prior:

p(μ, σ2) ∝ p(μ)p(σ2) ∝ σ−2 ∝ NIχ2(μ, σ2|μ0 = 0, κ0 = 0, ν0 = −1, σ2
0 = 0) (4.232)

With this prior, the posterior has the form

p(μ, σ2|D) = NIχ2(μ, σ2|mN = x, κN = N, νN = N − 1, σ2
N = s2) (4.233)

where

s2 � 1

N − 1

N∑
i=1

(xi − x)2 =
N

N − 1
σ̂2
mle (4.234)

is the the sample standard deviation. (In Section 6.4.2, we show that this is an unbiased
estimate of the variance.) Hence the marginal posterior for the mean is given by

p(μ|D) = T (μ|x, s
2

N
,N − 1) (4.235)
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and the posterior variance of μ is

var [μ|D] =
νN

νN − 2
σ2
N =

N − 1

N − 3

s2

N
→ s2

N
(4.236)

The square root of this is called the standard error of the mean:
√

var [μ|D] ≈ s√
N

(4.237)

Thus an approximate 95% posterior credible interval for the mean is

I.95(μ|D) = x± 2
s√
N

(4.238)

(Bayesian credible intervals are discussed in more detail in Section 5.2.2; they are contrasted
with frequentist confidence intervals in Section 6.6.1.)

4.6.3.8 Bayesian t-test

Suppose we want to test the hypothesis that μ �= μ0 for some known value μ0 (often 0), given
values xi ∼ N (μ, σ2). This is called a two-sided, one-sample t-test. A simple way to perform
such a test is just to check if μ0 ∈ I0.95(μ|D). If it is not, then we can be 95% sure that
μ �= μ0.4 A more common scenario is when we want to test if two paired samples have
the same mean. More precisely, suppose yi ∼ N (μ1, σ

2) and zi ∼ N (μ2, σ
2). We want to

determine if μ = μ1 − μ2 > 0, using xi = yi − zi as our data. We can evaluate this quantity
as follows:

p(μ > μ0|D) =

∫ ∞

μ0

p(μ|D)dμ (4.239)

This is called a one-sided, paired t-test. (For a similar approach to unpaired tests, comparing
the difference in binomial proportions, see Section 5.2.3.)

To calculate the posterior, we must specify a prior. Suppose we use an uninformative prior.
As we showed above, we find that the posterior marginal on μ has the form

p(μ|D) = T (μ|x, s
2

N
,N − 1) (4.240)

Now let us define the following t statistic:

t � x− μ0

s/
√
N

(4.241)

where the denominator is the standard error of the mean. We see that

p(μ|D) = 1− FN−1(t) (4.242)

where Fν(t) is the cdf of the standard Student t distribution T (0, 1, ν).

4. A more complex approach is to perform Bayesian model comparison. That is, we compute the Bayes factor (described
in Section 5.3.3) p(D|H0)/p(D|H1), where H0 is the point null hypothesis that μ = μ0 , and H1 is the alternative
hypothesis that μ �= μ0 . See (Gonen et al. 2005; Rouder et al. 2009) for details.
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4.6.3.9 Connection with frequentist statistics *

If we use an uninformative prior, it turns out that the above Bayesian analysis gives the same
result as derived using frequentist methods. (We discuss frequentist statistics in Chapter 6.)
Specifically, from the above results, we see that

μ− x√
s/N

|D ∼ tN−1 (4.243)

This has the same form as the sampling distribution of the MLE:

μ−X√
s/N

|μ ∼ tN−1 (4.244)

The reason is that the Student distribution is symmetric in its first two arguments, so T (x|μ, σ2, ν) =
T (μ|x, σ2, ν); hence statements about the posterior for μ have the same form as statements
about the sampling distribution of x. Consequently, the (one-sided) p-value (defined in Sec-
tion 6.6.2) returned by a frequentist test is the same as p(μ > μ0|D) returned by the Bayesian
method. See bayesTtestDemo for an example.

Despite the superficial similarity, these two results have a different interpretation: in the
Bayesian approach, μ is unknown and x is fixed, whereas in the frequentist approach, X
is unknown and μ is fixed. More equivalences between frequentist and Bayesian inference
in simple models using uninformative priors can be found in (Box and Tiao 1973). See also
Section 7.6.3.3.

4.6.4 Sensor fusion with unknown precisions *

In this section, we apply the results in Section 4.6.3 to the problem of sensor fusion in the
case where the precision of each measurement device is unknown. This generalizes the results
of Section 4.4.2.2, where the measurement model was assumed to be Gaussian with known
precision. The unknown precision case turns out to give qualitatively different results, yielding
a potentially multi-modal posterior as we will see. Our presentation is based on (Minka 2001e).

Suppose we want to pool data from multiple sources to estimate some quantity μ ∈ R, but the
reliability of the sources is unknown. Specifically, suppose we have two different measurement
devices, x and y, with different precisions: xi|μ ∼ N (μ, λ−1

x ) and yi|μ ∼ N (μ, λ−1
y ). We

make two independent measurements with each device, which turn out to be

x1 = 1.1, x2 = 1.9, y1 = 2.9, y2 = 4.1 (4.245)

We will use a non-informative prior for μ, p(μ) ∝ 1, which we can emulate using an infinitely
broad Gaussian, p(μ) = N (μ|m0 = 0, λ−1

0 = ∞). If the λx and λy terms were known, then
the posterior would be Gaussian:

p(μ|D, λx, λy) = N (μ|mN , λ−1
N ) (4.246)

λN = λ0 +Nxλx +Nyλy (4.247)

mN =
λxNxx+ λyNyy

Nxλx +Nyλy
(4.248)
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where Nx = 2 is the number of x measurements, Ny = 2 is the number of y measurements,

x = 1
Nx

∑Nx
i=1 xi = 1.5 and y = 1

Ny

∑Ny
i=1 yi = 3.5. This result follows because the posterior

precision is the sum of the measurement precisions, and the posterior mean is a weighted sum
of the prior mean (which is 0) and the data means.

However, the measurement precisions are not known. Initially we will estimate them by
maximum likelihood. The log-likelihood is given by

	(μ, λx, λy) = log λx − λx

2

∑
i

(xi − μ)2 + log λy − λy

2

∑
i

(yi − μ)2 (4.249)

The MLE is obtained by solving the following simultaneous equations:

∂	

∂μ
= λxNx(x− μ) + λyNy(y − μ) = 0 (4.250)

∂	

∂λx
=

1

λx
− 1

Nx

Nx∑
i=1

(xi − μ)2 = 0 (4.251)

∂	

∂λy
=

1

λy
− 1

Ny

Ny∑
i=1

(yi − μ)2 = 0 (4.252)

This gives

μ̂ =
Nxλ̂xx+Nyλ̂yy

Nxλ̂x +Nyλ̂y

(4.253)

1/λ̂x =
1

Nx

∑
i

(xi − μ̂)2 (4.254)

1/λ̂y =
1

Ny

∑
i

(yi − μ̂)2 (4.255)

We notice that the MLE for μ has the same form as the posterior mean, mN .
We can solve these equations by fixed point iteration. Let us initialize by estimating λx = 1/s2x

and λy = 1/s2y , where s2x = 1
Nx

∑Nx
i=1(xi − x)2 = 0.16 and s2y = 1

Ny

∑Ny
i=1(yi − y)2 = 0.36.

Using this, we get μ̂ = 2.1154, so p(μ|D, λ̂x, λ̂y) = N (μ|2.1154, 0.0554). If we now iterate,
we converge to λ̂x = 1/0.1662, λ̂y = 1/4.0509, p(μ|D, λ̂x, λ̂y) = N (μ|1.5788, 0.0798).

The plug-in approximation to the posterior is plotted in Figure 4.20(a). This weights each
sensor according to its estimated precision. Since sensor y was estimated to be much less

reliable than sensor x, we have E

[
μ|D, λ̂x, λ̂y

]
≈ x, so we effectively ignore the y sensor.

Now we will adopt a Bayesian approach and integrate out the unknown precisions, rather
than trying to estimate them. That is, we compute

p(μ|D) ∝ p(μ)

[∫
p(Dx|μ, λx)p(λx|μ)dλx

] [∫
p(Dy|μ, λy)p(λy|μ)dλy

]
(4.256)

We will use uninformative Jeffrey’s priors, p(μ) ∝ 1, p(λx|μ) ∝ 1/λx and p(λy|μ) ∝ 1/λy .
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Since the x and y terms are symmetric, we will just focus on one of them. The key integral is

I =

∫
p(Dx|μ, λx)p(λx|μ)dλx ∝

∫
λ−1
x (Nxλx)

Nx/2 (4.257)

exp

(
−Nx

2
λx(x− μ)2 − Nx

2
s2xλx

)
dλx (4.258)

Exploiting the fact that Nx = 2 this simplifies to

I =

∫
λ−1
x λ1

x exp(−λx[(x− μ)2 + s2x])dλx (4.259)

We recognize this as proportional to the integral of an unnormalized Gamma density

Ga(λ|a, b) ∝ λa−1e−λb (4.260)

where a = 1 and b = (x − μ)2 + s2x. Hence the integral is proportional to the normalizing
constant of the Gamma distribution, Γ(a)b−a, so we get

I ∝
∫

p(Dx|μ, λx)p(λx|μ)dλx ∝ (
x− μ)2 + s2x

)−1
(4.261)

and the posterior becomes

p(μ|D) ∝ 1

(x− μ)2 + s2x

1

(y − μ)2 + s2y
(4.262)

The exact posterior is plotted in Figure 4.20(b). We see that it has two modes, one near
x = 1.5 and one near y = 3.5. These correspond to the beliefs that the x sensor is more
reliable than the y one, and vice versa. The weight of the first mode is larger, since the data
from the x sensor agree more with each other, so it seems slightly more likely that the x sensor
is the reliable one. (They obviously cannot both be reliable, since they disagree on the values
that they are reporting.) However, the Bayesian solution keeps open the possibility that the y
sensor is the more reliable one; from two measurements, we cannot tell, and choosing just the
x sensor, as the plug-in approximation does, results in over confidence (a posterior that is too
narrow).

Exercises

Exercise 4.1 Uncorrelated does not imply independent

Let X ∼ U(−1, 1) and Y = X2. Clearly Y is dependent on X (in fact, Y is uniquely determined
by X ). However, show that ρ(X,Y ) = 0. Hint: if X ∼ U(a, b) then E[X] = (a + b)/2 and
var [X] = (b− a)2/12.

Exercise 4.2 Uncorrelated and Gaussian does not imply independent unless jointly Gaussian

Let X ∼ N (0, 1) and Y = WX , where p(W = −1) = p(W = 1) = 0.5. It is clear that X and Y are
not independent, since Y is a function of X .

a. Show Y ∼ N (0, 1).
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Figure 4.20 Posterior for μ. (a) Plug-in approximation. (b) Exact posterior. Figure generated by
sensorFusionUnknownPrec.

b. Show cov [X,Y ] = 0. Thus X and Y are uncorrelated but dependent, even though they are Gaussian.
Hint: use the definition of covariance

cov [X,Y ] = E [XY ]− E [X]E [Y ] (4.263)

and the rule of iterated expectation

E [XY ] = E [E [XY |W ]] (4.264)

Exercise 4.3 Correlation coefficient is between -1 and +1

Prove that −1 ≤ ρ(X,Y ) ≤ 1

Exercise 4.4 Correlation coefficient for linearly related variables is ±1

Show that, if Y = aX + b for some parameters a > 0 and b, then ρ(X,Y ) = 1. Similarly show that if
a < 0, then ρ(X,Y ) = −1.

Exercise 4.5 Normalization constant for a multidimensional Gaussian

Prove that the normalization constant for a d-dimensional Gaussian is given by

(2π)d/2|Σ| 12 =

∫
exp(−1

2
(x− μ)TΣ−1(x− μ))dx (4.265)

Hint: diagonalize Σ and use the fact that |Σ| = ∏
i λi to write the joint pdf as a product of d one-

dimensional Gaussians in a transformed coordinate system. (You will need the change of variables formula.)
Finally, use the normalization constant for univariate Gaussians.

Exercise 4.6 Bivariate Gaussian

Let x ∼ N (μ,Σ) where x ∈ R
2 and

Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
(4.266)

where ρ is the correlation coefficient. Show that the pdf is given by

p(x1, x2) =
1

2πσ1σ2

√
1− ρ2

(4.267)

exp

(
− 1

2(1− ρ2)

(
(x1 − μ1)

2

σ2
1

+
(x2 − μ2)

2

σ2
2

− 2ρ
(x1 − μ1)

σ1

(x2 − μ2)

σ2

))
(4.268)
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Figure 4.21 (a) Height/weight data for the men. (b) Standardized. (c) Whitened.

Exercise 4.7 Conditioning a bivariate Gaussian

Consider a bivariate Gaussian distribution p(x1, x2) = N (x|μ,Σ) where

Σ =

(
σ2
1 σ12

σ21 σ2
2

)
= σ1σ2

(σ1
σ2

ρ

ρ σ2
σ1

)
(4.269)

where the correlation coefficient is given by

ρ � σ12

σ1σ2
(4.270)

a. What is P (X2|x1)? Simplify your answer by expressing it in terms of ρ, σ2, σ1, μ1,μ2 and x1.

b. Assume σ1 = σ2 = 1. What is P (X2|x1) now?

Exercise 4.8 Whitening vs standardizing

a. Load the height/weight data using rawdata = dlmread(’heightWeightData.txt’). The first col-
umn is the class label (1=male, 2=female), the second column is height, the third weight. Extract the
height/weight data corresponding to the males. Fit a 2d Gaussian to the male data, using the empirical
mean and covariance. Plot your Gaussian as an ellipse (use gaussPlot2d), superimposing on your
scatter plot. It should look like Figure 4.21(a), where have labeled each datapoint by its index. Turn in
your figure and code.

b. Standardizing the data means ensuring the empirical variance along each dimension is 1. This can be
done by computing

xij−xj
σj

, where σj is the empirical std of dimension j. Standardize the data and

replot. It should look like Figure 4.21(b). (Use axis(’equal’).) Turn in your figure and code.

c. Whitening or sphereing the data means ensuring its empirical covariance matrix is proportional to
I, so the data is uncorrelated and of equal variance along each dimension. This can be done by

computing Λ− 1
2UTx for each data vector x, where U are the eigenvectors and Λ the eigenvalues of

X. Whiten the data and replot. It should look like Figure 4.21(c). Note that whitening rotates the data,
so people move to counter-intuitive locations in the new coordinate system (see e.g., person 2, who
moves from the right hand side to the left).

Exercise 4.9 Sensor fusion with known variances in 1d

Suppose we have two sensors with known (and different) variances v1 and v2, but unknown (and the same)
mean μ. Suppose we observe n1 observations y

(1)
i ∼ N (μ, v1) from the first sensor and n2 observations
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y
(2)
i ∼ N (μ, v2) from the second sensor. (For example, suppose μ is the true temperature outside,

and sensor 1 is a precise (low variance) digital thermosensing device, and sensor 2 is an imprecise (high
variance) mercury thermometer.) Let D represent all the data from both sensors. What is the posterior
p(μ|D), assuming a non-informative prior for μ (which we can simulate using a Gaussian with a precision
of 0)? Give an explicit expression for the posterior mean and variance.

Exercise 4.10 Derivation of information form formulae for marginalizing and conditioning

Derive the information form results of Section 4.3.1.

Exercise 4.11 Derivation of the NIW posterior

Derive Equation 4.209. Hint: one can show that

N(x− μ)(x− μ)T + κ0(μ−m0)(μ−m0)
T (4.271)

= κN (μ−mN )(μ−mN )T +
κ0N

κN
(x−m0)(x−m0)

T (4.272)

This is a matrix generalization of an operation called completing the square.5

Derive the corresponding result for the normal-Wishart model.

Exercise 4.12 BIC for Gaussians

(Source: Jaakkola.)

The Bayesian information criterion (BIC) is a penalized log-likelihood function that can be used for model
selection (see Section 5.3.2.4). It is defined as

BIC = log p(D|θ̂ML)− d

2
log(N) (4.273)

where d is the number of free parameters in the model and N is the number of samples. In this question,
we will see how to use this to choose between a full covariance Gaussian and a Gaussian with a diagonal
covariance. Obviously a full covariance Gaussian has higher likelihood, but it may not be “worth” the extra
parameters if the improvement over a diagonal covariance matrix is too small. So we use the BIC score to
choose the model.

Following Section 4.1.3, we can write

log p(D|Σ̂, μ̂) = −N

2
tr
(
Σ̂

−1
Ŝ
)
− N

2
log( ˆ|Σ|) (4.274)

Ŝ =
1

N

N∑
i=1

(xi − x)(xi − x)T (4.275)

where Ŝ is the scatter matrix (empirical covariance), the trace of a matrix is the sum of its diagonals, and
we have used the trace trick.

a. Derive the BIC score for a Gaussian in D dimensions with full covariance matrix. Simplify your answer
as much as possible, exploiting the form of the MLE. Be sure to specify the number of free parameters
d.

b. Derive the BIC score for a Gaussian in D dimensions with a diagonal covariance matrix. Be sure to
specify the number of free parameters d. Hint: for the digaonal case, the ML estimate of Σ is the same
as Σ̂ML except the off-diagonal terms are zero:

Σ̂diag = diag(Σ̂ML(1, 1), . . . , Σ̂ML(D,D)) (4.276)

5. In the scalar case, completing the square means rewriting c2x2 + c1x+ c0 as −a(x− b)2 + w where a = −c2 ,

b = c1
2c2

and w =
c21
4c2

+ c0 .
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Exercise 4.13 Gaussian posterior credible interval

(Source: DeGroot.)

Let X ∼ N (μ, σ2 = 4) where μ is unknown but has prior μ ∼ N (μ0, σ
2
0 = 9). The posterior after

seeing n samples is μ ∼ N (μn, σ
2
n). (This is called a credible interval, and is the Bayesian analog of a

confidence interval.) How big does n have to be to ensure

p(� ≤ μn ≤ u|D) ≥ 0.95 (4.277)

where (�, u) is an interval (centered on μn) of width 1 and D is the data. Hint: recall that 95% of the
probability mass of a Gaussian is within ±1.96σ of the mean.

Exercise 4.14 MAP estimation for 1D Gaussians

(Source: Jaakkola.)

Consider samples x1, . . . , xn from a Gaussian random variable with known variance σ2 and unknown
mean μ. We further assume a prior distribution (also Gaussian) over the mean, μ ∼ N (m, s2), with fixed
mean m and fixed variance s2. Thus the only unknown is μ.

a. Calculate the MAP estimate μ̂MAP . You can state the result without proof. Alternatively, with a lot
more work, you can compute derivatives of the log posterior, set to zero and solve.

b. Show that as the number of samples n increase, the MAP estimate converges to the maximum likelihood
estimate.

c. Suppose n is small and fixed. What does the MAP estimator converge to if we increase the prior
variance s2?

d. Suppose n is small and fixed. What does the MAP estimator converge to if we decrease the prior
variance s2?

Exercise 4.15 Sequential (recursive) updating of Σ̂

(Source: (Duda et al. 2001, Q3.35,3.36).)

The unbiased estimates for the covariance of a d-dimensional Gaussian based on n samples is given by

Σ̂ = Cn =
1

n− 1

n∑
i=1

(xi −mn)(xi −mn)
T (4.278)

It is clear that it takes O(nd2) time to compute Cn. If the data points arrive one at a time, it is more
efficient to incrementally update these estimates than to recompute from scratch.

a. Show that the covariance can be sequentially udpated as follows

Cn+1 =
n− 1

n
Cn +

1

n+ 1
(xn+1 −mn)(xn+1 −mn)

T (4.279)

b. How much time does it take per sequential update? (Use big-O notation.)
c. Show that we can sequentially update the precision matrix using

C−1
n+1 =

n

n− 1

[
C−1
n − C−1

n (xn+1 −mn)(xn+1 −mn)
TC−1

n

n2−1
n

+ (xn+1 −mn)TC
−1
n (xn+1 −mn)

]
(4.280)

Hint: notice that the update to Cn+1 consists of adding a rank-one matrix, namely uuT , where
u = xn+1 − mn. Use the matrix inversion lemma for rank-one updates (Equation 4.111), which we
repeat here for convenience:

(E+ uvT )−1 = E−1 − E−1uvTE−1

1 + vTE−1u
(4.281)
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d. What is the time complexity per update?

Exercise 4.16 Likelihood ratio for Gaussians

Source: Source: Alpaydin p103 ex 4. Consider a binary classifier where the K class conditional densities
are MVN p(x|y = j) = N (x|μj ,Σj). By Bayes rule, we have

log
p(y = 1|x)
p(y = 0|x) = log

p(x|y = 1)

p(x|y = 0)
+ log

p(y = 1)

p(y = 0)
(4.282)

In other words, the log posterior ratio is the log likelihood ratio plus the log prior ratio. For each of the 4
cases in the table below, derive an expression for the log likelihood ratio log p(x|y=1)

p(x|y=0)
, simplifying as much

as possible.
Form of Σj Cov Num parameters
Arbitrary Σj Kd(d+ 1)/2
Shared Σj = Σ d(d+ 1)/2
Shared, axis-aligned Σj = Σ with Σij = 0 for i �= j d
Shared, spherical Σj = σ2I 1

Exercise 4.17 LDA/QDA on height/weight data

The function discrimAnalysisHeightWeightDemo fits an LDA and QDA model to the height/weight
data. Compute the misclassification rate of both of these models on the training set. Turn in your numbers
and code.

Exercise 4.18 Naive Bayes with mixed features

Consider a 3 class naive Bayes classifier with one binary feature and one Gaussian feature:

y ∼ Mu(y|π, 1), x1|y = c ∼ Ber(x1|θc), x2|y = c ∼ N (x2|μc, σ2
c ) (4.283)

Let the parameter vectors be as follows:

π = (0.5, 0.25, 0.25), θ = (0.5, 0.5, 0.5), μ = (−1, 0, 1), σ2 = (1, 1, 1) (4.284)

a. Compute p(y|x1 = 0, x2 = 0) (the result should be a vector of 3 numbers that sums to 1).

b. Compute p(y|x1 = 0).

c. Compute p(y|x2 = 0).

d. Explain any interesting patterns you see in your results. Hint: look at the parameter vector θ.

Exercise 4.19 Decision boundary for LDA with semi tied covariances

Consider a generative classifier with class conditional densities of the form N (x|μc,Σc). In LDA, we
assume Σc = Σ, and in QDA, each Σc is arbitrary. Here we consider the 2 class case in which
Σ1 = kΣ0, for k > 1. That is, the Gaussian ellipsoids have the same “shape”, but the one for class 1
is “wider”. Derive an expression for p(y = 1|x,θ), simplifying as much as possible. Give a geometric
interpretation of your result, if possible.

Exercise 4.20 Logistic regression vs LDA/QDA

(Source: Jaakkola.) Suppose we train the following binary classifiers via maximum likelihood.

a. GaussI: A generative classifier, where the class conditional densities are Gaussian, with both covariance
matrices set to I (identity matrix), i.e., p(x|y = c) = N (x|μc, I). We assume p(y) is uniform.

b. GaussX: as for GaussI, but the covariance matrices are unconstrained, i.e., p(x|y = c) = N (x|μc,Σc).
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c. LinLog: A logistic regression model with linear features.

d. QuadLog: A logistic regression model, using linear and quadratic features (i.e., polynomial basis function
expansion of degree 2).

After training we compute the performance of each model M on the training set as follows:

L(M) =
1

n

n∑
i=1

log p(yi|xi, θ̂,M) (4.285)

(Note that this is the conditional log-likelihood p(y|x, θ̂) and not the joint log-likelihood p(y,x|θ̂).) We
now want to compare the performance of each model. We will write L(M) ≤ L(M ′) if model M must
have lower (or equal) log likelihood (on the training set) than M ′, for any training set (in other words, M is
worse than M ′, at least as far as training set logprob is concerned). For each of the following model pairs,
state whether L(M) ≤ L(M ′), L(M) ≥ L(M ′), or whether no such statement can be made (i.e., M
might sometimes be better than M ′ and sometimes worse); also, for each question, briefly (1-2 sentences)
explain why.

a. GaussI, LinLog.

b. GaussX, QuadLog.

c. LinLog, QuadLog.

d. GaussI, QuadLog.

e. Now suppose we measure performance in terms of the average misclassification rate on the training
set:

R(M) =
1

n

n∑
i=1

I(yi �= ŷ(xi)) (4.286)

Is it true in general that L(M) > L(M ′) implies that R(M) < R(M ′)? Explain why or why not.

Exercise 4.21 Gaussian decision boundaries

(Source: (Duda et al. 2001, Q3.7).) Let p(x|y = j) = N (x|μj , σj) where j = 1, 2 and μ1 = 0, σ2
1 =

1, μ2 = 1, σ2
2 = 106. Let the class priors be equal, p(y = 1) = p(y = 2) = 0.5.

a. Find the decision region

R1 = {x : p(x|μ1, σ1) ≥ p(x|μ2, σ2)} (4.287)

Sketch the result. Hint: draw the curves and find where they intersect. Find both solutions of the
equation

p(x|μ1, σ1) = p(x|μ2, σ2) (4.288)

Hint: recall that to solve a quadratic equation ax2 + bx+ c = 0, we use

x =
−b±√

b2 − 4ac

2a
(4.289)

b. Now suppose σ2 = 1 (and all other parameters remain the same). What is R1 in this case?



4.6. Inferring the parameters of an MVN 147

Exercise 4.22 QDA with 3 classes

Consider a three category classification problem. Let the prior probabilites:

P (Y = 1) = P (Y = 2) = P (Y = 3) = 1/3 (4.290)

The class-conditional densities are multivariate normal densities with parameters:

μ1 = [0, 0]T , μ2 = [1, 1]T , μ3 = [−1, 1]T (4.291)

Σ1 =

[
0.7 0
0 0.7

]
,Σ2 =

[
0.8 0.2
0.2 0.8

]
,Σ3 =

[
0.8 0.2
0.2 0.8

]
(4.292)

Classify the following points:

a. x = [−0.5, 0.5]

b. x = [0.5, 0.5]

Exercise 4.23 Scalar QDA

[Note: you can solve this exercise by hand or using a computer (matlab, R, whatever). In either case, show
your work.] Consider the following training set of heights x (in inches) and gender y (male/female) of some
US college students: x = (67, 79, 71, 68, 67, 60), y = (m,m,m, f, f, f).

a. Fit a Bayes classifier to this data, using maximum likelihood estimation, i.e., estimate the parameters of
the class conditional likelihoods

p(x|y = c) = N (x;μc, σc) (4.293)

and the class prior

p(y = c) = πc (4.294)

What are your values of μc, σc, πc for c = m, f ? Show your work (so you can get partial credit if you
make an arithmetic error).

b. Compute p(y = m|x, θ̂), where x = 72, and θ̂ are the MLE parameters. (This is called a plug-in
prediction.)

c. What would be a simple way to extend this technique if you had multiple attributes per person, such
as height and weight? Write down your proposed model as an equation.




