CHAPTER 3

Fundamental Properties and Sampling
Distributions of the Multivariate Normal
Distribution

In this chapter we study some fundamental properties of the multivariate
normal distribution, including distribution properties and related sampling
distributions.

We first observe several different definitions of the multivariate normal
distribution and show their equivalence. In Section 3.3 we consider a partition
of the components of a multivariate normal variable, then derive the marginal
and conditional distributions and the distributions of linear transformations
and linear combinations of its components. The multiple and partial correla-
tions, the canonical correlations, and the principal components are defined
and studied in Section 3.4. Finally, in Section 3.5, we derive sampling distribu-
tions of the sample mean vector, the sample covariance matrix, and the sample
correlation coefficients.

3.1. Preliminaries

In order to properly define the multivariate normal distribution and to study
its distribution properties more efficiently, we begin with a review of some
basic facts concerning the covariance matrix and the characteristic function
of an n-dimensional random variable.

Forn>2letX = (X,, ..., X,) be an n-dimensional random variable. Let
; and o;; denote, respectively, the mean and the variance of X; (i =1, ..., n),
and let o;; denote the covariance between X; and X; (1 <i <j < n). Then
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24 3. Fundamental Properties and Sampling Distributions

are, respectively, the mean vector and the covariance matrix of X. For nota-
tional convenience we shall occasionally write o; as 67 (i = 1, ..., n).

Fact 3.1.1. For k > 1, let C be a k x n real matrix and let b be a k x 1 real
vector. Let Y = CX + b. Then the mean vector and the covariance matrix of Y
are, respectively,

Ry = Cl,l + b, ZY = CX(C'.

PrOOF. For each fixedi = 1, ..., k, we have

Y=Y ¢ X, +b, i=1,..,k
Thus
EYL: cis.us"'bi'a i=1,.._,k,
1

s=

which is the ith row of Cp + b. Furthermore,

E(Y, — EY)(Y, — EY) = EH 3 X, — us)}{i (X, — u,)ﬂ

s=1 =1
= i Zn: CisCOij>
which is just the (i, j)th element of CXC'. ]
Choosingk=1landC=c¢ = (c,..., ¢,) in Fact 3.1.1 we have

Fact 3.1.2. For ¢ = (cy, ..., ¢,) the variance of Y = ¢X = Y7 ¢;X; is
n n
of =3 Y cco,;=cXe.
i=1 j=1

Ann x nsymmetric matrix X is said to be positive definite (p.d.)if ¢'Ze > 0
holds for all real vectors ¢, and equality holds only for ¢ = 0. It is said to be
positive semidefinite (p.s.d.) if ¢’Ee¢ > 0 holds for all real vectors ¢, and equality
holds for some ¢ = ¢, # 0. It is known that if ¥ is p.d. (p.s.d.), then |£]| > 0
(IX| = 0) or, equivalently, the rank of X is n (is less than n).

The distribution of X is said to be singular if there exists a vector ¢, # 0
such that Y = ¢, X is singular (that is, P[Y = uy] = 1). But the variance of Y
is ¢’Ec and Y is singular if and only if 62 = 0. Thus we have

Fact 3.1.3. 4 covariance matrix X is either p.d. or p.s.d. Furthermore,
Yispsd <= |E|=0,
< the rank of X is less than n,

<> the corresponding distribution is singular.
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We shall say that the distribution of X is nonsingular if it is not singular.
Furthermore, for notational convenience we write X > 0 instead of [X| > 0
when X is p.d.

The characteristic function (c.f.) of an n-dimensional random variable X is
given by '

Yx(t) = EeX, e R,

where i? = — 1. Through an application of the following known result:

Fact 3.1.4 (Uniqueness Theorem). The c.f. of a random variable X determines
its distribution uniquely;

c.f’s can be used for finding the distribution of a random variable.
For linear transformations of random variables, the following fact can
easily be established:

Fact 3.1.5. Let X be an n-dimensional random variable with c.f. Yx(t). Let C be
ann x nreal matrix and let b be an n x 1 vector. Thenthecf.of Y =CX +b
is Yy(t) = " PyYx(C'0).

PROOF. Yy(t) = EeitY
— Eeit(CX+b)

— eit’bEei(C't)’X‘ I:I

Now consider the partition of the components of an n-dimensional random
variable Y given by Y = (Y, Y,), where Y, isk x 1l and Y, is (n — k) x 1.

Fact 3.1.6. If the c.f. of Y is Yry(t), t € R", then the c.f. of Y, is Yy(t,, 0), t; € R~

Proor.

YUy (1, ..., ) =E exp(iithj> =E exp[i(i LY + i OIG)] = Yyl(t,, 0).

KTt
O

If His a k x n real matrix (k < n) and if we are interested in finding the
distribution of Y, = HX, a standard procedure is:

(i) Find yy(t), the c.f. of
Y, H o0
()= ¥

by applying Fact 3.1.5, where 0 is the k x (n — k) matrix with elements 0,
and I,,_, is the (n — k) x (n — k) identity matrix;
(ii) find Yy (t;) from Yy (t), where t; = (¢, ..., t,) € RY;
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(iii) identify the density fi(y,) associated with the c.f. Yy (t,), then apply the
uniqueness theorem (Fact 3.1.4) to claim that the density function of Y,

is f1(y1)-

This method will be used in the proof of Theorem 3.3.1 for deriving the
marginal distributions of a multivariate normal distribution.

3.2. Definitions of the Multivariate
Normal Distribution

We first give a definition of the nonsingutar multivariate normal distribution.

Definition 3.2.1. An n-dimensional random variable X with mean vector p and
covariance matrix I is said to have a nonsingular multivariate normal distri-
bution, in symbols X ~ 4, (n, ¥), £ > 0, if (i) L is positive definite, and (ii) the
density function of X is of the form

fxpX)= “Om B2y e R (3.2.1)

1
@ry P IE[7 ¢

where
0.(x; 1, ) = (x — gy L7 (x — p). (322

Remark 3.2.1. For this definition to be consistent, we must verify that if X has
the density function f(x; p, X), then the mean vector and the covariance matrix
of X are indeed p and X, respectively. This is postponed and will be given in
Remark 3.3.1.

Now let X ~ A4, (n, L), X > 0, and consider the transformation

Y=CX+b, (3.2.3)

where C = (c;;) is an n x n real matrix and b is a real vector.

Theorem 3.2.1. Let Y be defined as in (3.2.3). If X ~ A, (p, X), . > 0, and C is
an n X nreal matrix such that |C| # 0, then Y ~ A, (ny, Ly), Zy > 0, where

py=Cp+b, Ey=CEC. (3.2.4)

Proor. The mean vector and the covariance matrix of Y given in (3.2.4) follow
immediately from Fact 3.1.1. To show normality we note that if |C| s 0, then
C™! and (CEC')™! = C'1X71C™? both exist. Thus we can write (by y =
Cx + b) x = C™!(y — b). The density function of Y is then given by

g(y; wy, Zy) = f(C (y — b), p, T)|J|

1

= e (€l a-b-mEHCy-b-m)2) )
(m)"? 2 ’
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where |J| is the absolute value of |C™!| and f is defined in (3.2.1). But
|C™1| = 1/|C|, so that |X|"*?|J| = |CEC'|""2. Furthermore, it is straightfor-
ward to verify that

C'y—-b—wWI(C(y—b)—p
=(y — (Cn + b)) (CEC)(y — (Cp + b))
= Q.(¥; ny, Zy).
Thus we have

g(y; py, Ly) = e ik B2, y € R™. |

1

A special case of interest is the standard multivariate normal variable,
denoted by Z =(Z,, ..., Z,), with means 0, variances 1, and correlation
coefficients 0. In this case we can write Z ~ #4,(0, I,) with the density function
given by

1 12
" I [ — —_—— 2 n'
f(z0,1) ) exp( 2}; z,), ZeR

Thus Z,, ..., Z, are independent random variables. After integrating out, we
see that the marginal distribution of Z; is univariate normal with mean 0 and
variance 1.

Consider any given random variable X which has an .#,(p, Z) distribution,
X > 0. We now show how X and Z are related. For this purpose we recall a
result in linear algebra.

Proposition 3.2.1. Let X be an n X n symmetric matrix with rank r such that
is either positive definite (r = n) or positive semidefinite (r < n).

@) If r=n, then there exists a nonsingular n x n matrix H such that
HXIH =1,.

(i) If r < n, then there exists a nonsingular n x n matrix H such that

I 0
HIH = " ‘2) =D, 3.2.5
<021 022 ( )

where 0,,,0,,, 0,5, arer x (n—r),(n —r) x r, and (n — r) x (n — r) ma-
trices with elements 0.

Letting B = H™! we have:

(i) if r = n, then there exists a nonsingular n x n matrix B such that BB’ = L;
(i) if r < n, then there exists a nonsingularn x nmatrix B such that BDB' = X.

ProoF. See Anderson (1984, Theorem A.2.2). O

By choosing C = B in Proposition 3.2.1(i) we immediately have

Theorem 3.2.2. X ~ A, (1, X), X > 0, holds if and only if there exists a non-
singular n x n matrix C such that
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(i) CC' =X; and
(i) X and CZ + p are identically distributed, where Z ~ A,(0, L,).

Next we direct our attention to the more general case in which the covari-
ance matrix is not necessarily positive definite. To this end, we state a natural
generalization of Definition 2.0.1(b).

Definition 3.2.2. An n-dimensional random variable X with mean vector p and
covariance matrix X is said to have a singular multivariate normal distribution
(in symbols, X ~ A4, (n, ), |X| = 0) if:

(i) X is positive semidefinite; and
(ii) for somer < nthereexistsann x rreal matrix C such that Xand CZ, + p
are identically distributed, where Z, ~ A4,(0, L,).

Combining the nonsingular (Definition 3.2.1) and singular (Definition 3.2.2)
cases, we have

Definition 3.2.3. An n-dimensional random variable with mean vector p and
covariance matrix X is said to have a multivariate normal distribution (in
symbols A, (n, L)) if either X ~ A,(n, X), E > 0, 0or X ~ A, (1, X), || = 0.

By Theorem 3.2.2 and Definition 3.2.2, Definition 3.2.3 is equivalent to:

Definition 3.2.4. An n-dimensional random variable X with mean vector p and
covariance matrix X is said to have a multivariate normal distribution (in

symbols X ~ A4,(n, X)) if there exists an n x r matrix C with rank r < n such
that:

(i) CC’' = X; and
(i) X and CZ, + p are identically distributed, where Z, ~ 4,(0, 1,).

Definition 3.2.4 was proposed by P.L. Hsu (Fang, 1988). It applies to both
the nonsingular and singular cases, and is convenient for obtaining the mar-
ginal distributions and distributions of linear transformations of normal
variables. Another useful application of Definition 3.2.4 is for obtaining the
characteristic function (c.f.) of a multivariate normal variable. Since the c.f. of
a univariate .4°(0, 1) variable is e 2, the c.f. of Z, is

Yz, ) =2, te R
By Definition 3.2.4 and Facts 3.1.4 and 3.1.5 we have, for all r < n:

Theorem 3.2.3. X ~ A, (n, X) holds if and only if its characteristic function is
of the form
Px(t) = P EEZ e R (3.2.6)
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The next definition involves a closure property of linear combinations of
the components of X.

Definition 3.2.5. An n-dimensional random variable X with mean vector p and
covariance matrix X is said to have a multivariate normal distribution if the
distribution of ¢'X is (univariate) 4"(¢'p, ¢ Xc) for all real vectors c.

It should be noted that for a given n-dimensional random variable X, ¢'X
may have a univariate normal distribution for some ¢ # 0 but not for all ¢. In
this case, of course, X is not normally distributed. To see this fact, consider
the following example given in Anderson (1984, pp. 47-48).

ExaMPLE 3.2.1. Let n = 2, and define
A= {(x17 X,):0<x;<1,i=1, 2},
Ay ={(x;, %) —=1<x,<0,0<x, <1},
A3 = {(xh xz)’: —-1< X< 0,i=1, 2}:
Ay ={(x,x,):0<x;, <1, -1 <x, <0}.

Let the density function of X = (X, X,) be

(1
— e Gi+xd2 for xe A, UA;,
7
fx)=+<0 for xe d,uUA,,
1 —(x3+x3)/2 H
——e TR otherwise.
27

Then the marginal distributions of X, and X, are both A47(0, 1), hence ¢'X is

A0, 1) for ¢ = (1, 0Y or ¢ = (0, 1). But clearly X does not have a bivariate
normal distribution. O

We now prove the equivalence of all the definitions of the multivariate
normal distribution stated above.

Theorem 3.2.4. Definitions 3.2.3, 3.2.4, and 3.2.5 are equivalent.

Proor. The equivalence of Definitions 3.2.3 and 3.2.4 is clear. Thus it suffices
to show the equivalence of Definitions 3.2.4 and 3.2.5.

It is immediate that if X ~ A4/ (s, L), then ¢’X is a univariate A4 (¢'p, ¢'Xc)
variable for all ¢. Conversely, suppose that ¢/X has an A7(¢'p, ¢'X¢) distribution
for all ¢ € R”", then

Vex(t) = E exp (it 2‘1 ¢ XJ-) = QTR Tep2 (3.2.7)
j=
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holds for all t € R and ¢ € R*. Thus
Yex(l) = Ee®X = P 2 = yk(c), ceR"

But /§(c) is just the characteristic function of a multivariate normal variable
with mean vector p and covariance matrix X. Thus by Theorem 3.2.3 and Fact
3.1.4 we have X ~ A (n, X). O

3.3. Basic Distribution Properties

In this section we describe certain distribution properties of the multivariate
normal distribution.

3.3.1. Marginal Distributions and Independence

First we show that the marginal distributions of a muitivariate normal variable
are normal. For fixed k < n, consider the partitions of X, p, and X given below:

X1> (lh) <Z11 212)
X = R = , = N 33.1
(Xz : 113 X Ly ( )

X, =X, .. X)), Xo=Xs1s..r X)), (3.3.2)
Be= (B -ees i) P2 = (Hir1s -5 Ha)s (3.3.3)

where

L, is the covariance matrix of X; (i = 1, 2), and X, = (0;)) is such that ¢;; =
cov(X;, X;) for 1 <i <j < n Let R = (p,;) be such that
pij =—O-L‘7 ly] = 19"'9 n. (3.34)

9:i0j;

Then R is called the correlation matrix of X. The diagonal elements of R are
1 and the off-diagonal elements are the correlation coefficients. For the partition
of  defined in (3.3.1), a corresponding partition of R is

Ry R12)
R = . 3.3.5)
<R21 R, (

In the following theorem we first derive the marginal distributions of X,
and X,.

Theorem 3.3.1. If X ~ A, (n, X), then for every fixed k < n the marginal distri-
butions of X and X, are N (ny, Xy;) and N, _,(n,, E,,), respectively.
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PRrOOF. By Theorem 3.2.3 and Fact 3.1.6, the characteristic function of X, is

Ux,(tys .. ) = Yx(ty, o 4, 0,...,0)
— eit’p1~t’}2“t/2, te mk'

Thus, again by Theorem 3.2.3, X has an #,(p,, X,,) distribution. The distri-
bution of X, follows similarly. O

If X has a nonsingular normal distribution, then £ > 0. This in turn implies
Y., > 0and X,, > 0. Consequently, we have

Corollary 3.3.1. If X ~ A, (n, ), £ > 0, then X; ~ A (#;, Zy4), By, > 0, and
X, ~ NiBas Epp), pp > 0.

Remark 3.3.1. Choosing k = 2 in Corollary 3.3.1 we observe, from Theorem
2.1.1, that if X has the density function given in (3.2.1), then the marginal
distribution of (X, X,) is bivariate normal with means y,, , and variances
6,1, 0,5, Tespectively, and covariance oy,. By symmetry we conclude that if X
has the density function given in (3.2.1), then the mean vector and the covari-
ance matrix of X are, respectively, p and X. This observation shows that
Definition 3.2.1 is indeed consistent as noted in Remark 3.2.1.

It is well known that, in general, uncorrelated random variables are not
necessarily independent. But for the multivariate normal variables those two
conditions are equivalent. This is shown below.

Theorem 3.3.2. Let X, X, be the random variables defined in (3.3.1) where
X ~ A, (n, X). Then they are independent if and only if £,, = 0.

ProoF. Let yx(ty,...,t,) denote the characteristic function of X then, by
(3.2.6),

T,=0 <« (f,.., t)B(F, ..., ) =tiX t; +t5,5,,t,
< Yx(t) = Yx, (t)Yx,(t;)

for all t; =(ty,...,t,) € R and t, = (teyq, ..., 1,) € R"7X Since X, X, are
independent if and only if their joint characteristic function is the product of
the marginal characteristic functions, the proof is complete. O

Remark 3.3.2. If the distribution of X in Theorem 3.3.2 is nonsingular, then

an alternative proof exists: Let f;(x,), f>(x,) be the marginal density functions
of X;, X, given by
1
— —QW(X 304, E14)/2
N) = g e T
1

— —Q (X351, E25)/2
fa(x)) = (2n)(n—k)/2|222|1/2e pRnTalE,
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where
Q9(x;; my, Byp) = (x; — ) E5(x; — m), i=12
IfX>0and X,, =0, then

-1 -1
g Oy (Fn 0 (3.3.6)
Simple calculation yields the identity
0.5 1 B) = QW5 my, Zp1) + QP(x2; By, Ez). (3:3.7)

This implies that
JOGr, B) = f1(x45 01, Ei1)f2(X25 B2y E35)s

as desired.

3.3.2. Linear Transformations and Linear Combinations

For the univariate case, the normal family of distributions is closed under
linear transformations and linear combinations of random variables. In the
following we show that the family of multivariate normal distributions also
possesses such closure properties.

Theorem 3.3.3. If X ~ A, (1, X) and Y = CX + b, where C is any given m x n
real matrix and b is any m x 1 real vector, then Y ~ A,,(Cp + b, CZC').

PRrROOF. (i) For m = n, the proof follows immediately from Fact 3.1.5 and
Theorem 3.2.3.

(i) For m < n, consider the transformation

« (Y1) _(C b
)-G) e

where B is any given (n — m) x n matrix. Since

Y, .~ ((Cu+D) (CZC' CZB
v,)” "\ Bp ) \BzC BEB))
Y=Y, =CX+b~ 4,(Cp CEC)
(i) For m > n, by Definition 3.2.4, there exists an n x r matrix C* such
that X and C*Z, + p are identically distributed, where r < n is the rank of .

Thus CX 4+ b and CC*Z, + (Cp + b) are both distributed according to a
singular /(Cp + b, CEC’) distribution (again by Definition 3.2.4). O

If X is a nonsingular normal variable and, for m < n, if the m x n matrix
C has rank m, then there exists an (n — m) x n matrix B such that the matrix
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(§)in (3.3.8) is nonsingular. This implies that the distribution of Y*, and hence
the distribution of Y, is nonsingular. Combining the result for » = n already
stated in Theorem 3.2.1 we have

Corollary 3.3.2. If X ~ A, (p, X), £ > 0, C is an m X n real matrix with rank
m < nyandbisanm X 1realvector, then CX + b has a nonsingular 4,,(Cp + b,
CXC) distribution.

Next we consider linear combinations of the components of a multivariate
normal variable. Let C,, C, be m x k and m x (n — k) matrices. For the
partition defined in (3.3.1) consider the linear combination Y = C, X, +
C,X,. Rewriting this as Y = CX, where C =(C; C,) is an m x n matrix,
and applying Theorem 3.3.3 yield

Corollary 3.3.3. Let X be partitioned as in (3.3.1), and let C,, C, be twom x k
and m x (n — k) real matrices, respectively. If X ~ A, (n, L), then

Y = C, X, + C.X, ~ N,(ny, Ly),

where
py = Cipy + Copa, (3.39)

Iy = C,Z,,C; + C,X,,C, + C,E,,Ch + C,X,,C.  (3.3.10)

A special case of interestis Y = ¢; X, + ¢,X, where ¢y, ¢, are real numbers
and n = 2k. This can be treated in Corollary 3.3.3 by taking C; =¢;I; (i =
1,2). If in addition X,, = 0, then clearly Y is distributed according to an
Nleimy + calty, X, + ¢3X,,) distribution. Generalizing this result to sev-
eral variables by induction we have

Corollary 3.34. If X,, X,, ..., Xy are independent N, (n;, X;) variables (j =
1,...,N), then Y =YY, ¢X; is distributed according to an N, (Y ¥, c;n;,
YL, et L)) distribution.

3.3.3. Conditional Distributions

For 1 < k < n consider the partition of X defined in (3.3.1) and the linear

transformation
Y L. —B\/X
Y=(_")=(F Y ¢ 3.3.11
()= D)= e

where Y, and Y, are k x 1 and (n — k) x 1 random variables, respectively,
and Bisa k x (n — k) real matrix. If X ~ 4, (n, ), then by Theorem 3.3.3 the
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joint distribution of Y;, Y, is A4, (ny, Zy), where

By = (m - Bl‘2>,
9]

Ty = (zu + BX,,B'— BL,;, —X;,B" X, — BEzz)
(X2 — B, L,

If T is nonsingular, then 7] and X3 both exist. Thus if we choose B to satisfy
X,; — BX,, =0, that is, if B is chosen to be

B=%,,5;1, (3.3.12)
12422

then Y, and Y, are uncorrelated (and thus independent). Consequently, we

have
Y1> <X1 - 21225:}.X2> <<V1-z> <211,2 0 >>
= ~ N, , , (3.3.13)
<Y2 X, Rz 0 )PP (

Vie =R — EpE00M,, (3.3.14)
Lii2=E — L0555, (3.3.15)

where

Since X, — X,,¥;1X, and X, are independent normal variables with
marginal densities

1
RGO

1
A kA~ 12 €
Qm) B2 |E,, |1

—0n(x; —E15E73X23V1.2, 5y 1-2)/2’

g(xy; p, X|x;)

fZ(XZ; B, E) = “Qn~k(xz;llzs}:zz)/2’

respectively, their joint density is given by g(x,; p, £|x,)f5(X,; p, ). From this
joint density function we can rewrite the joint density of (X,, X,) by a linear
transformation, which yields
S (X1, X251, E) = g(x4; B, Z[X,)f5(x25 g, X). (3.3.16)
But
f(xy, X5 1 X) = fip(xg5 1, E[X3)f2(X25 1, X) (3:3.17)

also holds where f;, is the conditional density function of X,, given X, =
X,. Thus the conditional density function of X;, given X, = x,, must be
g(x1; B, Z|x,). Since
QX — ZoE00X55 V0, Byp0) = (X — Py ) BT (x — ryp), (3.3.18)
where
Rio =R +EpE5(0X, —ny), (3.3.19)

we then obtain
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Theorem 3.34. Let X be partitioned as in (3.3.1). If X ~ A,(n, L), £ >0,
then for any fixed k < n the conditional distribution of X,, given X, = Xx,,
is MWy, 211.,) Where p,., and £, ., are defined in (3.3.19) and (3.3.15),
respectively.

We note in passing that p, ., is the conditional mean vector and X, ., is the
conditional covariance matrix of X;, given X, = x,. Furthermore, p;., is a
linear function of x, and £, ., does not depend on x,. The matrix B = £,,%53
is called the regression matrix of X, on X, and will be discussed more
extensively in the next section.

3.4. Regression and Correlation

Consider the partition of the components of X into X, and X, defined in (3.3.1).
In this section we study:

(a) the best predictor of a component of X, based on X, = x,;

(b) the multiple correlation coefficient between a component of X; and the
components of X,;

(c) the partial correlation coefficient between two components of X, given
X, =Xy;

(d) the canonical correlation coefficients between X, and X,; and

(e) the principal components of X.

3.4.1. Best (Linear) Predictors

For fixed 1 < i < k suppose that we are interested in predicting the value of
X, given X, = x,. Let X; = A(x,) denote a predictor which is a function of x,.
The problem of interest is to find the optimal choice of such a function. For
this purpose we define

Definition 3.4.1. £F = 1*(x,) is said to be the best predictor of X, based on
X, = x,, using the loss function
L(X;, Ax,)) = (X; — A(x,))?,
if
inf E[(X; — 4(x,))*|X; = X,] = E[(X; — 2*(x,))*|X; = X,]
holds for all x,.

For certain multivariate distributions, the best predictor is difficult to find.
Since linear functions of x, are simpler, we often restrict attention to the subset
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of all linear functions of x, and then obtain the best linear predictor. In the
following we show that, for the multivariate normal distribution, the “overall”
best predictor is in fact a linear predictor.

To see this, first note that

E[(X; — A(x,))* X, = x,]
= EL{(X; — w;.2(x2)) + (p;.2(x5) — l(xz))}2|X2 =X,]
= Var(X;|X; = x;) + (1.2(%;) — 4(X2))?,

where
Wi2(X2) = E(X;|X, = X,)

is the conditional mean. If Var(X;|X, = x,) does not depend on x,, then
clearly E[(X; — A(x,))*|X, = x,] is minimized when the second term is zero.

If X ~ 4,1, ), Z > 0, then by Theorems 3.3.4 and 3.3.1 the conditional
distribution of X, given X, = x,, is normal with mean

Bia(X2) = p; + GiZEé(Xz - n) (34.1)

(a linear function of x,) and variance

Oii-k+1,...n = Oii — 6; L33 6}, (34.2)
where
6; = (0 4155 Oin) (3.4.3)
is the ith row of the submatrix Z,,. Since 0.4, , does not depend on x,,
we have

Theorem 3.4.1. If X ~ A, (n, £), X > 0, then for all i < k the best predictor of
X;, based on X, = X,, is y;.,(X,) given in (3.4.1).

We note that for given X, = x, the smallest value of E(X; — A(x,))? is
Oii-k+1,....n- The infimum occurs, of course, at A*(x,) = y;.,(x,). Also note that
U;.2(X,) 18 just the ith row of the vector p, + B(x, — pu,) where B is the
regression matrix defined in (3.3.12).

3.4.2. Multiple Correlation Coefficient

The theory of partial and multiple correlation coefficients treated in this
section was originally developed by Pearson (1896) and Yule (1897a, b). The
reader is referred to Pearson (1920) for the historical developments.

Assume that X ~ A, (n, X), £ > 0. Then, for fixed 1 <i <k and given
real vector ¢, the joint distribution of (X, ¢'X,) can be obtained by the

transformation
X, 0;1...0;
; i — il 61k 0 0 X,
X, 0...0 c¢;...coy
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where

5 1 for i=j},
v {0 otherwise.
By Theorem 3.3.3, this distribution is bivariate normal with means y; and ¢'p,,
and variances o;; and ¢’ I, , ¢, respectively, and covariance ¢'¢; where o; is given
in (3.4.3). Thus for ¢ # 0 the correlation coefficient between X; and ¢'X, is
simply ¢ 6}/(6;,¢' E,,¢)"2.

In certain applications, we are 1nterested in the best linear combination of
the components of X, such that the correlation coefficient between X; and
¢'X, is maximized.

Definition 3.4.2. Let X be partitioned as in (3.3.1). For 1 < i < k the multiple
correlation coefficient between X; and X, is defined by

,,,,

. = sup Corr(X;, ¢'X,). (3.4.4)
[4

In the following theorem we show that the ¢’ vector which maximizes the
right-hand side of (3.4.4) is 6, X33, the same vector that yields the best predictor
for X;, when X, = x, is given.

Theorem 3.4.2. If X ~ ¥, (1, £), £ > 0, and the components of X are partitioned
as in (3.3.1), then for every fixed i =1, ..., k the supremum of the right-hand
side of (3.4.4) is attained at ¢ = 6,23}, and

p N\ 1/2 )
Rier...., =<"—l> . (3.4.5)

O

Proor. We shall follow the core of the argument given in Anderson (1984,
p. 40). Since the correlation coefficient does not depend on the means, with-
out loss of generality it may be assumed that p = 0. By Theorem 3.4.1, the
inequality

E[(X; — 6, Z71%,)*1X; = X,] < E[(X; — ae'x,)*|X; = x;]
holds for all real numbers o, real vectors ¢, and all x, € R"*. After uncondi-
tioning we have

E(X; — 6,X;1X,)? < E(X; — ac'X,)? (3.4.6)
for all « and ¢. Expanding both sides of (3.4.6) we have
Var(6,X51X,) — 2 Cov(X;, 6;X53X,) < o Var(¢'X;) — 2a Cov(X;, ¢'X,).

After rearranging the terms and dividing (o;; Var(e; X33 X,))"? throughout, we
then obtain

Cov(X;, 6,X51X,) — a Cov(X;, ¢'X,)
(0;; Var(e,233X,))"?

Var(e,Z;1X,)\ 7 B a? Var(c'X,)
Oii (03 Var(6, 253 X,))" |

>

IS

13
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The inequality
Corr(X;, 6;X53X,) — Corr(X;, ¢X,;) >0

now follows by choosing

_ (Var(e;X2;X,)\"?

U Var(@X,) '
Consequently, we have

_ Cov(X;, 6,X::X,)

""" " (0;; Var(6,X33X,))"

_ 6,L;50;
(0u(0, 255 67))

- (oo -

For the nonsingular multivariate normal distribution, the multiple correla-
tion coefficient given in (3.4.5) is always larger than or equal to zero and less
than or equal to one. Furthermore, since X3 is positive definite (because £,,
is positive definite), it is equal to zero if and only if ¢; = 0; that is, if and only
if X; and X, are independent. _

Since (X;, 6;X55X,) has a bivariate normal distribution with means y;,
6,155 1,, variances oy, 6;X536;, and correlation coefficient R;. ..y
conditional distribution of X;, given 6;%;1x,, is normal with variance

o1 — Riz-k+1 n) = Oy — "iZE ;. (3.4.7)

This is the smallest possibie variance of the conditional distribution of X;,

given ¢'X, = ¢'x,, where ¢ is a nonzero real vector, and is obtained when ¢’
is chosen to be 6,X;2.

.....

3.4.3. Partial Correlation Coefficients

The partial correlation coefficient between two random variables is their
correlation coefficient after allowing for the effects of a set of other variables.
Fori,j=1,...,k,i # j,if we consider the correlation between X; and X;, when
X, = (Xp+1» ---» X,,) 18 fixed, then this correlation coefficient can be obtained
from the conditional distribution of (X;, X;), given X, = x,.

Definition 3.4.3. Let X be partitioned as in (3.3.1). Then for given X, = x, the
partial correlation coefficient between X; and X is

_ Cov(Xu X)Xy = xy)
" (Var(XX, = x,) Var(X;|X, = x,))"?
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For the general case, the partial correlation coefficient might depend on
X,. But for the multivariate normal distribution the result is quite simple,
depending only on the elements of the covariance matrix.

Theorem 3.4.3. If X ~ A, (n, X), £ > 0, and the components of X are partitioned
as in (3.3.1), then

B 0 — 6,273
Pkt on = (6 = 6,2516)) (0 — 6,5330)) "
fori,j=1,...,ki#]j.

(3.4.8)

Proor. By Theorem 3.3.4, the conditional distribution of X,, given X, = Xx,,
is normal with the conditional covariance matrix £,,., = £;, — Z;,X77 X5;.
Thus by Theorem 3.3.1 the conditional distribution of (X;, X;), given X, = x,,
is bivariate normal with the conditional covariance matrix

0; Oy [N _ .
( " J) _< 1>22%(0i Gj)- [:]
gy Tjj O;
Note that the partial correlation coefficient in (3.4.8) is nonnegative if and
only if g;; > ®; 2226 Thus it is possible to have a covariance matrix X such
that the correlation coefficient between X; and X; (which is p; = a;/\/0;0;;)

is positive while the partial correlation coefficient is negative. As an illustration
consider the following example:

ExampLE 3.4.1. Let X = (X, X,, X,) be distributed according to an .45(0, X)
distribution, where g; =1 (i=1,2,3)and g, =1 —2¢, 06,3 =0,3=1 —¢,
0 < & < 1. Forevery fixed ¢ = (¢, ¢;, c3) € R> we have
(@) €Xe=(c2+c3+c3)+2(1 —e)(cicy + cyc3 + cae3) — 26, C,
=(1—¢)(c; + ¢y + c3)* + elc; — ¢,)? + ec3.

Since ¢'Zc > 0 holds, and the equality holds if and only if ¢, = ¢; = ¢35 = 0,
X is a positive definite matrix.

(b) The conditional distribution of (X, X,), given X; = x;, is bivariate
normal with the covariance matrix

1 1—2¢ 11 2—¢ —¢
T, = —a—e, )= .
12 (1—2e 1 ) =9 (1 1) 8( —e 2—s>

Thus p;, =1 —2¢>0and p,,.5 = —¢&/(2—¢) <O. ]

3.4.4. Canonical Correlation Coefficients

The theory of canonical correlation was developed by Hotelling (1936), and
may be regarded as a generalization of the notion of the multiple correlation.
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Let us again consider the partition of X into X, and X,, defined in (3.3.1),
where X, = (X, ..., X;) and X, = (X;,4, ..., X,). Recall that the multiple
correlation coefficient between X; and X, is the largest possible correlation
coefficient between X; and ¢’ X, over all possible choices of real vectors ¢, where
1 <i < kisfixed. In canonical correlation analysis we are interested in finding
two real vectors ¢y, ¢, such that the correlation coefficient between ¢, X and
¢, X, is maximized.

This maximization process can be carried out in the following fashion:
First, we choose ¢, to maximize the correlation coefficient between ¢; X, and
¢, X, for fixed c,, then we find its maximum over all possibie choices of c;.
Second, we choose ¢, to maximize the correlation coefficient between ¢, X,
and ¢} X for fixed ¢,, then we find the optimal solution for ¢,. After completing
these two steps we then choose the larger of the two resulting correlation
coefficients.

Now, for every fixed ¢, and X, = ¢} X; (say), the best choice of ¢}, is simply
the regression vector of X, on X,. Thus the largest possible correlation
coefficient is just (¢; £,,X53 X, ¢, /¢, £, ¢;)*?, the multiple correlation coeffi-
cient between X, and X, . Furthermore, since correlation coefficients are scale
invariant, without loss of generality it may be assumed that

c¢,L;;¢c, =1 (34.9)
Using Lagrange’s method of multipliers, this amounts to the maximization of
gley, A) =€\ T35 E01¢; — A(C Ty ¢ — 1), (34.10)

subject to the constraint in (3.4.9). After taking partial derivatives with respect
to the components of ¢, and letting them equal zero, we have

(=A%, + Z,,Z508, )e; = 0. (3.4.11)

Multiplying the left-hand side of (3.4.11) by ¢ and using the identity in (3.4.9),
we then obtain

A=¢ X518, ¢, (3.4.12)
For ¢, to have a nontrivial solution in (3.4.11) we must have
hi(A=1—-22,, +Z,E1%,,|=0. (3.4.13)

But h,(4) is a polynomial of degree k. It can be verified that (see Anderson
(1984, p. 483)) if X is positive definite, then s, (4) has k nonnegative real roots.
Similarly, the maximization of the multiple correlation coefficient
(€5 X, 11X ,¢,/e5,X,,¢,) 2, subject to the constraint
X, =1, (3.4.14)
leads to the equation

(_A‘ZZZ + 2212;%212)CZ = 0. (3.4'15)
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In order to have a nonsingular solution we must have
hy(A) = | —4%;; + Z21):'Ii212| =0, (3.4.16)

which has n — k nonnegative real roots.
Let A;, A, ..., A, be the collection of roots of the two equations k(1) = 0
and h,(1) = 0 and, without loss of generality, assume that

Then by (3.4.12) the largest canonical correlation coefficient is simply \/Z .
The vectors ¢,, ¢,, which yield this largest canonical correlation coefficient,
can be obtained from either (3.4.11) or (3.4.15) with A = ,, depending on
which equation has the root 1,. Let (¢, 4, ¢, ;) denote such a solution. Then
the random variables ¢ ;X;, ¢, ; X, are called the first pair of canonical
variables.

This process can be continued to find all the 4; values and the corresponding
canonical variables. Without loss of generality, let

A>Ay> o >020

denote the r (r < n) distinct roots of h (1) = 0 and h,(4) = 0. Then \/TJ is
called the jth canonical correlation coefficient, and the corresponding vector
(cy.; Xy, ¢, ;X,) is called the jth pair of canonical variables. Using Lagrange’s
method of multipliers it can be shown that (see Anderson (1984, p. 484)) the
vectors {¢; ;}j-1, {€,,;}}=1 also satisfy the conditions, for all s # ¢,

() ¢} X, and ¢} X, are independent, (3.4.18)
(i) ¢, X, and ¢, X, are independent, (3.4.19)
(ii1) ¢, X, and ¢, X, are independent. (3.4.20)

Summarizing the above result, we say

Definition 3.4.4. Let X be partitioned as in (3.3.1), and let

7;= sup Corr(c) ;X;, ¢ ;X;)

clvj,czvj
subject to (3.4.18)—(3.4.20) and the condition
€1, ;X11Cy,; = €3 X556, ;= 1.

The distinct values 7, > t, > - > 1, (r < n) are called the canonical correla-
tion coefficients between X, and X,.

If X is a nonsingular .4,(p, X) variable, then £, and X,, are both non-
singular. Thus we obtain

Theorem 3.44. If X ~ A, (n, ), X > 0, and X is partitioned as in (3.3.1), then
the jth canonical correlation coefficient between X and X, is \/Ij, j=L...,m
where Ay > Ay > -+ > 1, > Qare the r distinct roots of hy(2) = 0and h,(4) = 0,
defined in (3.4.13) and (3.4.16), respectively.
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3.4.5. Principal Components

Principal component analysis, originally proposed and studied by Hotelling
(1933), concerns a method for obtaining a set of linear combinations of
components of an n-dimensional random variable with certain desirable
properties. Suppose that X ~ 4;,(p, X), T > 0. When the X;’s are independent,
then a measure of dispersion of the distribution of X is the sum of the variances
(which are the diagonal elements of X). Furthermore, the larger the variance
of X;, the more it contributes to this dispersion. Thus the problem of interest
is to define and obtain the principal (or the most influential) components with
large variances when the X’s are correlated. In this case it is not adequate just
to consider each of the components separately because they tend to hang
together.

In principal component analysis, we look for linear combinations of the
X/’s such that the variances are maximized under certain constraints. Let

¢, =(¢{¢» ..., Cq1,) be a real vector such that ¢jc; = 1 and
sup Var(a'X) = Var(c} X).
{o:o'at=1}

Then ¢, is the vector with norm 1 such that the variance of ¢/ X is maximized
over all linear combinations of the components under this constraint. To find
¢, note that Var(«'X) = o' Xt for all &. Thus, by Lagrange’s method of muliti-
pliers, this amounts to maximizing the function

g1, A) =X — AMer'ee — 1),

subject to a’'at = 1. By calculus it follows that

d
5&91(% A) =2(Za — Aot} = 2(E — AL)e,

where I, is the n x n identity matrix. The system of linear equations
(0/0m)g, (e, 4) = 0 has a nontrivial solution if and only if

MA)y=Z—-A,|=0 (3.4.21)
holds. Thus A must be an eigenvalue of X. Furthermore, if ¢, satisfies
2(X — Al)e, = 0 then, by &' = 1, we must have

Xe, = ley. (3.4.22)
and

¢ Xe, = AciL,e, = A (3.4.23)

Thus A is actually the variance of ¢}, X = Y,. Let 4, denote the value of this A.
After Y, and A, are obtained, we then look for another randm variable
Y, = ¢, X such that:

(i) chc, =13
(ii) Y, is independent of Y;; and
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() Y, has the largest variance among all linear combinations of components
of X that satisfy (i) and (ii).

If & is any vector that satisfies (i) and (ii), then o' = 1 and, by (3.4.22),
Cov(Y,, V) =c¢Za=aXe, =1,a'c; =0 (3.4.24)

that is, # and ¢, must be orthogonal. Applying Lagrange’s method of multipliers
one more time leads to the maximization of the function

g,(o, A, ) =o' X — A(o'at — 1) — o' ey,
subject to o' = 1 and (3.4.24). By

d
<=9, 4, 1) = 2(Za — At — nZXc,)

ou
and (3.4.24) it follows that if ¢, is a solution of (3/0e)g,(a, 4, 1) = 0, then
¢, Xc, — Acjc, — nejXe, = —nejXe, =0,

¢, Xc, — Acye, — neyXe; =0.
Thus we have # = 0. This implies that ¢, and 1 also satisfy the equations
A=c,Xc,, (X —AL)c, =0.

Consequently, if ¢, has a nontrivial solution, then 4 also satisfies (3.4.21). Let
the value of this 4 be denoted by 4,.

Itisknown thatif Xisann x npositive definite matrix, then it has n positive
real eigenvalues. Let 4,, ..., 4, be the eigenvalues and, without loss of gener-
ality, assume that

Azhyz=22,>0 (3.4.25)

Then using a similar argument we can continue this process to find » real
vectors €4, €,, ..., ¢, such that:

() cie;=1(=1,...,n)
(i) cic; = Oforalli # j; and
(iii) the variance of ¥, =¢/Xis 4;(i=1,...,n).

Expressing the linear transformation in a matrix form we have

Theorem 3.4.5. Let X ~ A, (0, X), 2> 0, and let A, ..., A, be the eigen-
values of X satisfying (3.4.25). Then there exists an orthogonal matrix C =
(€1, €25 ..., ¢,) satisfying Y = C'X ~ N,(C'n, D), where D = (d;;) is a diagonal
matrix such that d; = 4, (i=1,..., n).

We now provide a formal definition of the principal components of X when
it has a multivariate normal distribution.

Definition 3.4.5. Let X ~ A, (1, X), £ >0, and let Y =(Y;,..., Y,) be the
random variable defined in Theorem 3.4.5. Then Y, is said to be the ith
principal component of X (i = 1, ..., n).
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Remark 3.4.1. If the components are independent, then T is already a diagonal
matrix. In this case, Y, is the component of X with the largest variance, Y, is
the component of X with the second largest variance, and so on; and ¢; =
©,...,0,1,0,...,0) which has a “1” in one of the n positions.

Remark 3.4.2. As a measure of the contributions to the sum of the variances

of the ¥7s, the ratios 4;/) -, 4; (i =1,..., n) are of interest. In particular,

A1/ 1=, 4; represents the contribution of the first principal component of X.
We note in passing that applications of the results of principal component

analysis are not limited to the multivariate normal distribution because Theo-
rem 3.4.5 does not require the assumption of normality.

3.4.6. An Example

We complete this section with an example.

ExXAMPLE 3.4.2. Let n =5, k = 2, and X ~ #5(p, ). Consider the partition
X, =Xy, Xp), X, = (X3, Xy, Xs5),
— (211 E12)
221 E22 ’

131
n= >
(“2)

1 p p
1 p
Iy =< 12>, Lp=1|p 1 po |,

where

P
2 pr pp 1
E,=%, = <P1 P/ P1>’
Pr P1 P

and 0 < p; < p, < 1. That is, the random variables are partitioned into two
groups; the correlation coefficients within each group are p,, and the correlation
coefficients between groups are p;.

(@) X is a nonsingular normal variable, ie., £ > 0. To see this, for all
nonzero vectors ¢ = (cq, ¢,, €3, C4, C5) 7 0.we have

¢'Xe

5
= 21 ¢ + 2palcrcy + e3leq + €s) + c4cs) + 2p1(cy + €3)(cs + ¢4 + C5)
&

5 \2 5
(ﬂ ; Ci) + (o2 = p)(er + 2> +(es+ e+ cs)?) + (1 — py) Z c?

> 0.
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(b) Simple calculation shows

1 L+p, —ps —P2

;= =p2 1+p —p;
1+ 2p,)(1 —
( p2)( p2) —p, —p, 1+ p,

_ P1 11 1
LI =
124422 1 + 2p2 (1 1 1>:

Z11-2 = 211 - 21225%221

1 1+2p, —3pf  po+2p5 —3p}
1+ 2p, \py + 203 —3p} 1+ 2p,—3p}

Thus

); (3.4.26)

and the conditional distribution of X, given X, = x,, is normal with mean
vector

Z(

- 1+2p

Z(J

and covariance matrix X,,., given in (3.4.26).
(c) The best predictor for X; (i = 1, 2), given (X5, X4, X5) = (X3, X4, X5), 18

Z(

(d) The multiple correlation coefficient between X; and X, is

NE = 1,2,

ta 1+2p2

lzlui 1+2p2

Ri' = 1=
345 1+ 200 20,
and R; ;4,5 =0 if and only if p, =0. When p, = p, = p, it becomes

30/ /T +2p.

(e) The partial correlation coefficient between X, and X, is

p2 + 2p3 — 3p}

Pi2.3a5 = 1+ 2p, — 3p2°

and is equal to p, when (X, X,) and (X3, X,, X5) are independent. When
p1 = p; = p, it reduces to p/(1 + 3p).

(f) The determinants of the matrices —AX;; + X;,X53X,; and —AZ,, +
¥,,X71X,, are, respectively,

hi(A) = (1 = p;)4 [(1 + p2)A — bt ] (3:4.27)

1+ 2p,

hy() = —(1 — p,)?A2 [(1 + 2p,)4 — 16Jf‘ ] (3.4.28)

P2
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Thus hy(4) =0 and h,(4) = 0 have a common unique positive root A, =
6p7/((L + p,)(1 + 2p,)) and ali the other roots are zero. Consequently, it
follows that:

(i) the largest canonical correlation coefficient between X; and X, is

V601 /\/(L+ p2)(1 + 2p,), which is \/6p//(1 + p)(1 + 2p) when p, =
P2 = P;

(i) the canonical variables that yieid this canonical correlation coefficient
can be obtained by either finding a solution for ¢, in (3.4.11) or finding a
solution for ¢, in (3.4.15), with 1 = 4,;

(iii) all other pairs of canonical variables that are uncorrelated with (hence
independent of) the first pair must also be independent.

This is so because all other canonical correlation coefficients are zero.
(g) Itis straightforward to verify that
IZ— sl =1 = 4= p,)’[(1 = A+ p)(1 — A +2p;) ~ 6pf]. (3.429)
Thus the eigenvalues of X are
Ay =1+3p, +5(03 + 24p])"7,
Ay =1+ 3p, — 3(p3 + 24p)"7,
Ay=A,=As=1—p,.
In the special case when p; = p, = p, we have
Ay =1+ 4p, A=Ay =R =As=1—p;

and a set of solutions for ¢; in (X — 4,15)¢; = 0is

1 1
¢ =——-(11111, = (—=41111),
1 \/g 2 /—20( )

1 1
ci=—"=0 -3 111), c,=—17=00 —211,

N 78

and

1 ,
¢s=—-(000 —1 1),
T2

7

Thus the orthogonal matrix C = (¢; ¢, ¢; ¢, ¢5) satisfies the condition that
Y = C'X ~ N;(C'p, D), where D is the diagonal matrix with diagonal ele-
ments 4y, ..., 4s. The components of Y, ¥; = ¢;X (i = 1, ..., 5), are the principal
components of X. When p; = p, = p, the variance of the first principal com-
ponent ¥; = ¢, X is A4; = ¢ Xc; = 1 + 4p, and its contri<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>