
CHAPTER 3 

Fundamental Properties and Sampling 
Distributions of the Multivariate Normal 
Distribution 

In this chapter we study some fundamental properties of the multivariate 
normal distribution, including distribution properties and related sampling 
distributions. 

We first observe several different definitions of the multivariate normal 
distribution and show their equivalence. In Section 3.3 we consider a partition 
of the components of a multivariate normal variable, then derive the marginal 
and conditional distributions and the distributions of linear transformations 
and linear combinations of its components. The multiple and partial correla
tions, the canonical correlations, and the principal components are defined 
and studied in Section 3.4. Finally, in Section 3.5, we derive sampling distribu
tions of the sample mean vector, the sample covariance matrix, and the sample 
correlation coefficients. 

3.1. Preliminaries 

In order to properly define the multivariate normal distribution and to study 
its distribution properties more efficiently, we begin with a review of some 
basic facts concerning the covariance matrix and the characteristic function 
of an n-dimensional random variable. 

For n z 2 let X = (XI' ... , Xn)' be an n-dimensional random variable. Let 
f1i and (Jii denote, respectively, the mean and the variance of Xi (i = 1, ... , n), 
and let (Jij denote the covariance between Xi and Xj (1 :::;; i < j :::;; n). Then 
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are, respectively, the mean vector and the covariance matrix of X. For nota
tional convenience we shall occasionally write O'u as O'i2 (i = 1, ... , n). 

Fact 3.1.1. For k 2 1, let C be a k x n real matrix and let b be a k x 1 real 
vector. Let Y = CX + b. Then the mean vector and the covariance matrix of Y 
are, respectively, 

Ily = CIl + b, ~y = c~C'. 

PROOF. For each fixed i = 1, ... , k, we have 

n 

Y; = L cisXs + bi> i = 1, ... , k. 
s=l 

Thus 
n 

EY; = L Cislls + bl , i = 1, ... , k, 
s=l 

which is the ith row of CIl + b. Furthermore, 

E(Y; - EY;)(lj - Elj) = E [L~ Cis(Xs - Ils)} t~ cj/(XI - Ill)} ] 

n n 

= L L cisCjlO'ij' 
s=l 1=1 

which is just the (i,j)th element of C~C'. 

Choosing k = 1 and C = c' = (c 1 , ••• , cn ) in Fact 3.1.1 we have 

Fact 3.1.2. For c' = (c 1 , ... , cn) the variance of Y = c'X = L7=1 CiXi is 

n n 

O'f = L L cicjO'ij = c'~c. 
i=l j=l 

D 

An n x n symmetric matrix ~ is said to be positive definite (p.d.) if c'~c 2 0 
holds for all real vectors c, and equality holds only for c = O. It is said to be 
positive semidefinite (p.s.d.) if c'~c 2 0 holds for all real vectors c, and equality 
holds for some c = Co -=I- O. It is known that if ~ is p.d. (p.s.d.), then I~I > 0 
(I~I = 0) or, equivalently, the rank of ~ is n (is less than n). 

The distribution of X is said to be singular if there exists a vector Co -=I- 0 
such that Y = c~X is singular (that is, P[Y = IlY] = 1). But the variance of Y 
is c'~c and Y is singular if and only if O'f = O. Thus we have 

Fact 3.1.3. A covariance matrix ~ is either p.d. or p.s.d. Furthermore, 

~ is p.s.d. ~ I~I = 0, 

~ the rank of ~ is less than n, 

~ the corresponding distribution is singular. 
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We shall say that the distribution of X is nonsingular if it is not singular. 
Furthermore, for notational convenience we write :E > 0 instead of I:EI > 0 
when :E is p.d. 

The characteristic function (c.f.) of an n-dimensional random variable X is 
given by 

t E 9{n, 

where i Z = -1. Through an application of the following known result: 

Fact 3.1.4 (Uniqueness Theorem). The c.f. of a random variable X determines 
its distribution uniquely; 

c.f.'s can be used for finding the distribution of a random variable. 
For linear transformations of random variables, the following fact can 

easily be established: 

Fact 3.1.5. Let X be an n-dimensional random variable with c.f.ljlx(t). Let e be 
an n x n real matrix and let b be an n x 1 vector. Then the cj. of Y = ex + b 
is ljIy(t) = eit"bljlx(C't). 

PROOF. ljIy(t) = Eeit"y 

= Eeit'(CX+b) 

= eit'bEei(C't)'x. D 

Now consider the partition of the components of an n-dimensional random 
variable Y given by Y = (Y1 , Yz)', where Y1 is k x 1 and Yz is (n - k) x 1. 

Fact 3.1.6. If the c.f. of Y is ljIy(t), t E 9{n, then the c.f. of Y 1 is ljIy(tl' 0), tl E 9{k. 

PROOF. 

ljIy,(tl' ... , tk) = E exp(i ~ tjl}) = E exp[i( ~ tjl} + ktl Ol}) ] = ljIy(tl' 0). 

D 

If H is a k x n real matrix (k < n) and if we are interested in finding the 
distribution of Y 1 = HX, a standard procedure is: 

(i) Find ljIy(t), the c.f. of 

by applying Fact 3.1.5, where 0 is the k x (n - k) matrix with elements 0, 
and In- k is the (n - k) x (n - k) identity matrix; 

(ii) find ljIy,(t 1) from ljIy(t), where tl = (tl' ... , tk), E 9{k; 
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(iii) identify the density fl(Yl) associated with the c.f. t/lY l(t1), then apply the 
uniqueness theorem (Fact 3.1.4) to claim that the density function of Y 1 

is f1 (y 1)' 

This method will be used in the proof of Theorem 3.3.1 for deriving the 
marginal distributions of a multivariate normal distribution. 

3.2. Definitions of the Multivariate 
Normal Distribution 

We first give a definition of the nonsingular multivariate normal distribution. 

Definition 3.2.1. An n-dimensional random variable X with mean vector JI and 
covariance matrix 1: is said to have a nonsingular multivariate normal distri
bution, in symbols X ~ ..¥,,(JI, 1:), 1: > 0, if (i) 1: is positive definite, and (ii) the 
density function of X is of the form 

where 

f(x'" 1:) = 1 e-Qn(X;I',I:)/2 
, r' (2n)n/211:ll/2 ' (3.2.1) 

(3.2.2) 

Remark 3.2.1. For this definition to be consistent, we must verify that if X has 
the density function f(x; JI, 1:), then the mean vector and the covariance matrix 
of X are indeed JI and 1:, respectively. This is postponed and will be given in 
Remark 3.3.1. 

Now let X "-' ..¥,,(JI, 1:), 1: > 0, and consider the transformation 

Y = CX + b, 

where C = (cij) is an n x n real matrix and b is a real vector. 

(3.2.3) 

Theorem 3.2.1. Let Y be defined as in (3.2.3). If X "-' ..¥,,(JI, 1:), 1: > 0, and Cis 
an n x n real matrix such that ICI #- 0, then Y ""' ..¥,,(Jly, 1:y), 1:y > 0, where 

Jly = CJI + b, ,1:y = C1:C'. (3.2.4) 

PROOF. The mean vector and the covariance matrix ofY given in (3.2.4) follow 
immediately from Fact 3.1.1. To show normality we note that if ICI #- 0, then 
C-1 and (C1:C')-l = C'-1 1:-1 C-1 both exist. Thus we can write (by Y = 
Cx + b) x = C-1(y - b). The density function ofY is then given by 

g(y; Jly, 1:y) = f(C- 1 (y - b), JI, 1:)IJI 
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where IJI is the absolute value of IC-11 and f is defined in (3.2.1). But 
IC-11 = 1/1C1, so that 11:1-1/2IJI = IC1:CT1/2. Furthermore, it is straightfor
ward to verify that 

(C-1(y - b) - p),1:-1(C-1(y - b) - p) 

= (y - (Cp + b)),(C1:C')-1(y - (Cp + b)) 

= Qn(y; Py, 1:y ). 

Thus we have 1 
g(y' P 1:) - e-Qn(y;py.I:y)/2 

, y, y - (2n)"/211:y I1/2 ' o 

A special case of interest is the standard multivariate normal variable, 
denoted by Z = (Z1" .. , Zn)', with means 0, variances 1, and correlation 
coefficients O. In this case we can write Z - .AI;.(O, In) with the density function 
given by 

f(z; 0, In) = (2:)"/2 exp ( - ~ j~ zJ), 

Thus Z1' ... , Zn are independent random variables. After integrating out, we 
see that the marginal distribution of Zi is univariate normal with mean 0 and 
variance 1. 

Consider any given random variable X which has an .AI;.(p, 1:) distribution, 
1: > O. We now show how X and Z are related. For this purpose we recall a 
result in linear algebra. 

Proposition 3.2.1. Let 1: be an n x n symmetric matrix with rank r such that 1: 
is either positive definite (r = n) or positive semidefinite (r < n). 

(i) If r = n, then there exists a nonsingular n x n matrix H such that 
Hl:H'=ln • 

(ii) If r < n, then there exists a nonsingular n x n matrix H such that 

Hl:H' = (01: 1 ~::) == D, (3.2.5) 

where 012,021,022 are r x (n - r), (n - r) x r, and (n - r) x (n - r) ma
trices with elements O. 

Letting B = H-1 we have: 

(i)' if r = n, then there exists a nonsingular n x n matrix B such that DB' = 1:; 
(ii)' if r < n, then there exists a nonsingular n x n matrix B such that BDB' = 1:. 

PROOF. See Anderson (1984, Theorem A.2.2). o 

By choosing C = B in Proposition 3.2.1 (i) we immediately have 

Theorem 3.2.2. X - .AI;.(p, 1:), 1: > 0, holds if and only if there exists a non
singular n x n matrix C such that 
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(i) CC' = 1:; and 
(ii) X and CZ + J! are identically distributed, where Z '" %,,(0, In}· 

Next we direct our attention to the more general case in which the covari
ance matrix is not necessarily positive definite. To this end, we state a natural 
generalization of Definition 2.0.1 (b). 

Definition 3.2.2. An n-dimensional random variable X with mean vector J! and 
covariance matrix 1: is said to have a singular multivariate normal distribution 
(in symbols, X", %,,(J!, 1:), [1:[ = O} if: 

(i) 1: is positive semidefinite; and 
(ii) for some r < n there exists an n x r real matrix C such that X and CZr + J! 

are identically distributed, where Zr '" %.(0, Ir ). 

Combining the nonsingular (Definition 3.2.1) and singular (Definition 3.2.2) 
cases, we have 

Definition 3.2.3. An n-dimensional random variable with mean vector J! and 
covariance matrix 1: is said to have a multivariate normal distribution (in 
symbols %,,(J!, 1:)} if either X", %,,(J!, 1:), 1: > 0, or X '" %,,(J!, 1:), [1:[ = 0. 

By Theorem 3.2.2 and Definition 3.2.2, Definition 3.2.3 is equivalent to: 

Definition 3.2.4. An n-dimensional random variable X with mean vector J! and 
covariance matrix 1: is said to have a multivariate normal distribution (in 
symbols X '" %,,(J!, 1:)) if there exists an n x r matrix C with rank r S n such 
that: 

(i) CC' = 1:; and 
(ii) X and CZr + J! are identically distributed, where Zr '" %.(0, Ir ). 

Definition 3.2.4 was proposed by P.L. Hsu (Fang, 1988). It applies to both 
the nonsingular and singular cases, and is convenient for obtaining the mar
ginal distributions and distributions of linear transformations of normal 
variables. Another useful application of Definition 3.2.4 is for obtaining the 
characteristic function (d.) of a multivariate normal variable. Since the d. of 
a univariate %(0, 1) variable is e- t2/ 2 , the d. of Zr is 

t E 91r • 

By Definition 3.2.4 and Facts 3.1.4 and 3.1.5 we have, for all r s n: 

Theorem 3.2.3. X '" %,,(J!, 1:) holds if and only if its characteristic function is 
of the form 

(3.2.6) 
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The next definition involves a closure property of linear combinations of 
the components of X. 

Definition 3.2.5. An n-dimensional random variable X with mean vector p and 
covariance matrix l: is said to have a multivariate normal distribution if the 
distribution of c'X is (univariate) %(c'p, c'l:c) for all real vectors c. 

It should be noted that for a given n-dimensional random variable X, c'X 
may have a univariate normal distribution for some c#-O but not for all c. In 
this case, of course, X is not normally distributed. To see this fact, consider 
the following example given in Anderson (1984, pp. 47-48). 

EXAMPLE 3.2.1. Let n = 2, and define 

Al = {(Xl' X2)': 0 ~ Xi ~ 1, i = 1, 2}, 

A2 = {(Xl,X2)': -1 ~ Xl ~ 0,0 ~ X2 ~ I}, 

A3 = {(Xl' X2)': -1 ~ Xi ~ 0, i = 1, 2}, 

A4 = {(Xl' X2)': 0 ~ Xl ~ 1, -1 ~ X 2 ~ O}. 

Let the density function of X = (Xl' X 2)' be 

f(x) = 0 

1 _(x2 +x2 )/2 -e I 2 

2n 
otherwise. 

Then the marginal distributions of Xl and X2 are both %(0,1), hence c'X is 
%(0, 1) for c = (1,0)' or c = (0, 1)'. But clearly X does not have a bivariate 
normal distribution. 0 

We now prove the equivalence of all the definitions of the multivariate 
normal distribution stated above. 

Theorem 3.2.4. Definitions 3.2.3, 3.2.4, and 3.2.5 are equivalent. 

PROOF. The equivalence of Definitions 3.2.3 and 3.2.4 is clear. Thus it suffices 
to show the equivalence of Definitions 3.2.4 and 3.2.5. 

It is immediate that if X'" .;v,.(p, l:), then c'X is a univariate %(c'p, c'l:c) 
variable for all c. Conversely, suppose that c'x has an %(c'p, c'l:c) distribution 
for all c E 9tn, then 

I/Ic'x(t) = E exp (it t CjXj ) = ei/C'Il-(C'I:c)/2/2 

)=1 
(3.2.7) 
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holds for all t E 91 and C E 9ln• Thus 

I/Ic'x(l) = EeiC'x = eic'p-c'I:c/2 == I/I~'<c), C E 9ln• 

But I/Ii(c) is just the characteristic function of a multivariate normal variable 
with mean vector P and covariance matrix 1:. Thus by Theorem 3.2.3 and Fact 
3.1.4 we have X '" .;v,.(p, 1:). 0 

3.3. Basic Distribution Properties 

In this section we describe certain distribution properties of the multivariate 
normal distribution. 

3.3.1. Marginal Distributions and Independence· 

First we show that the margina1 distributions of a multivariate normal variable 
are normal. For fixed k < n, consider the partitions of X, p, and 1: given below: 

where 
Xl = (Xl'·'" X k )', 

Pl = (J1,1' ... , J1,k)', 

1: = (1:11 1:12), 
1:21 1:22 

X2 = (Xk+l'···' X n)', 

P2 = (J1,k+l, ... , J1,n)', 

(3.3.1) 

(3.3.2) 

(3.3.3) 

1:ii is the covariance matrix of Xi (i = 1,2), and 1:12 = (O"ij) is such that O"ij = 
COV(Xi' Xj) for 1 ::;; i < j ::;; n. Let R = (Pij) be such that 

i,j= 1, ... ,n. (3.3.4) 

Then R is called the correlation matrix of X. The diagonal elements of Rare 
1 and the off-diagonal elements are the correlation coefficients. For the partition 
of 1: defined in (3.3.1), a corresponding partition ofR is 

(3.3.5) 

In the following theorem we first derive the marginal distributions of Xl 
and X 2 • 

Theorem 3.3.1. If X '" .;v,.(p, 1:), then for every fixed k < n the marginal distri
butions of Xl and X2 are A'i(J11' 1:11 ) and .;v,.-k(P2, 1:22), respectively. 
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PROOF. By Theorem 3.2.3 and Fact 3.1.6, the characteristic function of Xl is 

t/lx,(t 1, ... , tk) = t/lX(t1' ... , tk, 0, ... , 0) 

Thus, again by Theorem 3.2.3, Xl has an ~(Jl.1' 1:1 d distribution. The distri
bution of X2 follows similarly. 0 

If X has a nonsingular normal distribution, then 1: > 0. This in turn implies 
1:11 > ° and 1:22 > 0. Consequently, we have 

Corollary 3.3.1. If X '" ~(Jl., 1:),1: > 0, then Xl '" ~(Jl.1' 1:11 ), 1:11 > 0, and 
X2 '" ~-k(Jl.2' 1:22 ), 1:22 > 0. 

Remark 3.3.1. Choosing k = 2 in Corollary 3.3.1 we observe, from Theorem 
2.1.1, that if X has the density function given in (3.2.1), then the marginal 
distribution of (X 1, X 2)' is bivariate normal with means 111' 112 and variances 
0"11,0"22' respectively, and covariance 0"12. By symmetry we conclude that if X 
has the density function given in (3.2.1), then the mean vector and the covari
ance matrix of X are, respectively, Jl. and 1:. This observation shows that 
Definition 3.2.1 is indeed consistent as noted in Remark 3.2.1. 

It is well known that, in general, uncorrelated random variables are not 
necessarily independent. But for the multivariate normal variables those two 
conditions are equivalent. This is shown below. 

Theorem 3.3.2. Let Xl' X2 be the random variables defined in (3.3.1) where 
X '" ~(Jl., 1:). Then they are independent if and only if 1:12 = o. 

PROOF. Let t/lX(t1' ... ' tn) denote the characteristic function of X then, by 
(3.2.6), 

<=> t/lx(t) = t/lx,(t1)t/lX2 (t2) 

for all t1 = (t1' ... , td' E mk and t2 = (tk+1' ... , tn)' E mn- k • Since Xl' X2 are 
independent if and only if their joint characteristic function is the product of 
the marginal characteristic functions, the proof is complete. 0 

Remark 3.3.2. If the distribution of X in Theorem 3.3.2 is nonsingular, then 
an alternative proof exists: Let f1 (XdJ2(X2) be the marginal density functions 
of Xl' X2 given by 
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where 
i = 1,2. 

If 1: > 0 and 1:12 = 0, then 

1:-1 = (1:~1 o )-1 = (1:1t 0) 
1:22 0 1:zi' 

Simple calculation yields the identity 

Qn(x; 11, 1:) = Q(l)(x 1 ; Ill, 1:11 ) + Q(2)(X2; 112, 1:22 ), 

This implies that 

as desired. 

3.3.2. Linear Transformations and Linear Combinations 

(3.3.6) 

(3.3.7) 

For the univariate case, the normal family of distributions is closed under 
linear transformations and linear combinations of random variables. In the 
following we show that the family of multivariate normal distributions also 
possesses such closure properties. 

Theorem 3.3.3. If X ~ '%"(11,1:) and Y = CX + b, where C is any given m x n 
real matrix and b is any m x 1 real vector, then Y ~ JIIm(CI1 + b, C1:C'). 

PROOF. (i) For m = n, the proof follows immediately from Fact 3.1.5 and 
Theorem 3.2.3. 

(ii) For m < n, consider the transformation 

y* = (Y 1) = (C) X + ( b ) 
Y2 B 0n-m ' 

(3.3.8) 

where B is any given (n - m) x n matrix. Since 

(~J ~ J~( (C~; b). (~~~: ~~::)). 
Y = Y 1 = CX + b ~ JIIm(CI1, C1:C'). 

(iii) For m > n, by Definition 3.2.4, there exists an n x r matrix C* such 
that X and C* Zr + 11 are identically distributed, where r ::;; n is the rank of 1:. 
Thus CX + band CC* Zr + (CI1 + b) are both distributed according to a 
singular JII(CI1 + b, C1:C') distribution (again by Definition 3.2.4). 0 

If X is a nonsingular normal variable and, for m < n, if the m x n matrix 
C has rank m, then there exists an (n - m) x n matrix B such that the matrix 
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(~) in (3.3.8) is nonsingular. This implies that the distribution ofY*, and hence 
the distribution of Y, is nonsingular. Combining the result for r = n already 
stated in Theorem 3.2.1 we have 

Corollary 3.3.2. If X '" .A!;.(Ji, I:), I: > 0, C is an m x n real matrix with rank 
m ~ n, and b is an m x 1 real vector, then CX + b has a nonsingular .%m(CJi + b, 
CI:C') distribution. 

Next we consider linear combinations of the components of a multivariate 
normal variable. Let C l , C2 be m x k and m x (n - k) matrices. For the 
partition defined in (3.3.1) consider the linear combination Y = ClXl + 
C2X2. Rewriting this as Y = CX, where C = (C l C2) is an m x n matrix, 
and applying Theorem 3.3.3 yield 

Corollary 3.3.3. Let X be partitioned as in (3.3.1), and let Cl , C2 be two m x k 
and m x (n - k) real matrices, respectively. If X '" .A!;.(Ji, I:), then 

Y = ClXl + C2X2 '" .%m(Jiy, I:y), 

where 
Jiy = ClJil + C2Ji2, 

I:y = Cl I: l1 C'l + C2I:22C~ + ClI:12C~ + C2I:2l C'l' 

(3.3.9) 

(3.3.10) 

A special case of interest is Y = ClXl + C2X2 where Cl' C2 are real numbers 
and n = 2k. This can be treated in Corollary 3.3.3 by taking Ci = ciIk (i = 
1,2). If in addition I:12 = 0, then clearly Y is distributed according to an 
~(ClJil + C2Ji2' dI:l1 + dI:22) distribution. Generalizing this result to sev
eral variables by induction we have 

Corollary 3.3.4. If Xl' X2, ... , X N are independent .A!;.(Jij' I:j) variables (j = 

1, ... , N), then Y = :Lf=l CjXj is distributed according to an .A!;.(:Lf=l CjJij' 
:Lf=l cJI:j) distribution. 

3.3.3. Conditional Distributions 

For 1 ~ k < n consider the partition of X defined in (3.3.1) and the linear 
transformation 

Y = (Yl) = (Ik -B)(Xl) == CX, 
Y2 0 I n- k X 2 

(3.3.11) 

where Y land Y 2 are k x 1 and (n - k) x 1 random variables, respectively, 
and B is a k x (n - k) real matrix. If X '" .A!;.(Ji, I:), then by Theorem 3.3.3 the 
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joint distribution of Y l' Y 2 is .Y,,(py, I:y), where 

py = (P1 ~2BP2). 

I:y = (I:11 + BI:22B' - BI:21 - I:12B' I:12 - BI:22). 
(I:12 - BI:22)' I:22 

If I: is nonsingular, then I:lt and I:2~ both exist. Thus if we choose B to satisfy 
I:12 - BI:22 = 0, that is, if B is chosen to be 

(3.3.12) 

then Y 1 and Y 2 are uncorrelated (and thus independent). Consequently, we 
have 

where 
V1' 2 = P1 - I:12I:2~P2' 

I:11 ' 2 = I:11 - I:12I:2~I:21' 

(3.3.14) 

(3.3.15) 

Since Xl - I:12I:2~X2 and X2 are independent normal variables with 
marginal densities 

1 f (X ... I:) = e-Qn- k(X2;P2.I:22)/2 
2 2,,.., (2n)(n k)/21I:2211/2 ' 

respectively, their joint density is given by g(x1; p, I:lx2)f2(x2; p, I:). From this 
joint density function we can rewrite the joint density of (Xl' X2)' by a linear 
transformation, which yields 

(3.3.16) 

But 
(3.3.17) 

also holds where fl12 is .the conditional density function of Xl' given X2 = 
X2. Thus the conditional density function of Xl' given X2 = X2' must be 
g(x1; p, I:lx2). Since 

Qk(X 1 - I:12I:2~X2; V1'2, I:11 . 2) = (Xl - P1'2)'I:1t'2(x1 - P1'2), (3.3.18) 

where 
(3.3.19) 

we then obtain 



3.4. Regression and Correlation 35 

Theorem 3.3.4. Let X be partitioned as in (3.3.1). If X'" .;v,,(I1, ~), ~ > 0, 
then for any fixed k < n the conditional distribution of Xl' given X2 = x2 , 

is A'k(111.2, ~11·2) where 111.2 and ~11.2 are defined in (3.3.19) and (3.3.15), 
respectively. 

We note in passing that 111.2 is the conditional mean vector and ~11.2 is the 
conditional covariance matrix of Xl' given X2 = X2. Furthermore, 111.2 is a 
linearfunctionofx2 and ~11.2 does notdeperid onx2. The matrix B = ~12~2i 
is called the regression matrix of X2 on Xl' and will be discussed more 
extensively in the next section. 

3.4. Regression and Correlation 

Consider the partition of the components of X into X 1 and X2 defined in (3.3.1). 
In this section we study: 

(a) the best predictor of a component of Xl based on X2 = X2; 
(b) the multiple correlation coefficient between a component of Xl and the 

components of X2; 
(c) the partial correlation coefficient between two components of Xl' given 

X2 = x2 ; 

(d) the canonical correlation coefficients between Xl and X2; and 
(e) the principal components ofX. 

3.4.1. Best (Linear) Predictors 

For fixed 1 :::;; i :::;; k suppose that we are interested in predicting the value of 
Xi' given X2 = x2. Let Xi = A(X2) denote a predictor which is a function of x2. 
The problem of interest is to find the optimal choice of such a function. For 
this purpose we define 

Definition 3.4.1. xt = A*(X2) is said to be the best predictor of Xi based on 
X2 = X2, using the loss function 

if 

L(X;, A(X2)) = (Xi - A(~2)f, 

inf E[(Xi - A(X2))2IX2 = X2] = E[(Xi - A*(X2)f IX2 = x2] .. 
holds for all X2. 

For certain multivariate distributions, the best predictor is difficult to find. 
Since linear functions ofx2 are simpler, we often restrict attention to the subset 
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of all linear functions of X2 and then obtain the best linear predictor. In the 
following we show that, for the multivariate normal distribution, the "overall" 
best predictor is in fact a linear predictor. 

To see this, first note that 

E[(Xi - A(X2))2IX2 = x2] 

= E[{(X; - ,ui'2(X2)) + (,ui'2(X2) - A(X2))}2I X2 = X2] 

= Var(Xi1X2 = X2) + (,ui'2(X2) - A(X2))2, 

where 
,ui'2(X2) = E(XiIX2 = X2) 

is the conditional mean. If Var(Xi1X2 = x2) does not depend on X2, then 
clearly E[(X; - A(X2))2IX2 = X2] is minimized when the second term is zero. 

If X '" .¥"(,,, ~), ~ > 0, then by Theorems 3.3.4 and 3.3.1 the conditional 
distribution of Xi' given X2 = X2, is normal with mean 

,ui.2(X2) = ,u; + O"i~2Hx2 - "2) (3.4.1) 

(a linear function of X2) and variance 

(3.4.2) 

where 
(3.4.3) 

is the ith row of the submatrix ~12' Since O"ii.k+1 •...• n does not depend on X2, 
we have 

Theorem 3.4.1. If X '" .¥"(,,, ~), ~ > 0, then for all i ~ k the best predictor of 
Xi' based on X2 = x2, is ,ui'2(X2) given in (3.4.1). 

We note that for given X2 = X2 the smallest value of E(X; - A(X2))2 is 
O"ii.k+1 •...• n· The infimum occurs, of course, at A*(X2) = ,u;'2(X2)' Also note that 
,ui'2(X2) is just the ith row of the vector "1 + B(X2 - "2) where B is the 
regression matrix defined in (3.3.12). 

3.4.2. Multiple Correlation Coefficient 

The theory of partial and multiple correlation coefficients treated in this 
section was originally developed by Pearson (1896) and Yule (1897a, b). The 
reader is referred to Pearson (1920) for the historical developments. 

Assume that X '" .¥"(,,, ~), ~ > O. Then, for fixed 1 ~ i ~ k and given 
real vector c, the joint distribution of (Xi' c'X2)' can be obtained by the 
transformation 



3.4. Regression and Correlation 37 

where 

{ 1 for i = j, 
15··= " ° otherwise. 

By Theorem 3.3.3, this distribution is bivariate normal with means J1i and c' J!2' 
and variances (Jii and c'1:22c, respectively, and covariance c' (Ji where (Ji is given 
in (3.4.3). Thus for c "# 0 the correlation coefficient between Xi and C'X2 is 
simply c' (J;J((JiiC'1:22 c) 1/2. 

In certain applications, we are interested in the best linear combination of 
the components of X2 such that the correlation coefficient between Xi and 
C'X2 is maximized. 

Definition 3.4.2. Let X be partitioned as in (3.3.1). For 1 :::; i :::; k the multiple 
correlation coefficient between Xi and X2 is defined by 

R i .k+l ..... n = sup Corr(Xi' c'X2). 
c 

(3.4.4) 

In the following theorem we show that the c' vector which maximizes the 
right-hand side of (3.4.4) is (Ji1:2i, the same vector that yields the best predictor 
for Xi' when X2 = X2 is given. 

Theorem 3.4.2. If X ~ .;v,,(J!, 1:),1: > 0, and the components of X are partitioned 
as in (3.3.1), then for every fixed i = 1, ... , k the supremum of the right-hand 
side of (3.4.4) is attained at c' = (Ji1:2i, and 

R. = (Ji1:2i (J;)1/2 
l"k+l, ... ,n . (Jii 

(3.4.5) 

PROOF. We shall follow the core of the argument given in Anderson (1984, 
p. 40). Since the correlation coefficient does not depend on the means, with
out loss of generality it may be assumed that J! = O. By Theorem 3.4.1, the 
inequality 

E[(Xi - (Ji1:2ix2fIX2 = x 2] :::; E[(Xi - O(C'X2)2IX2 = x 2] 

holds for all real numbers 0(, real vectors c, and all X2 E ~R"-k. After uncondi
tioning we have 

E(Xi - (Ji1:2ix2)2 :::; E(Xi - O(C'X2)2 

for all 0( and c. Expanding both sides of (3.4.6) we have 

(3.4.6) 

Var(Ji1:2iX2) - 2 COV(Xi' (Ji1:2iX2):::; 0(2 Vat(c'X2) - 20( COV(Xi' c'X2). 

After rearranging the terms and dividing ((Jii Var(Ji1:2iX2W/2 throughout, we 
then obtain 

Cov(Xi, (Ji1:2iX2) - 0( COV(Xi' c'X2) 

((Jii Var(Ji1:2i X2))1/2 

> 1. [(Var(Ji1:2i X2))1/2 ~ 0(2 Var(c'X2) ] 
- 2 ( ( 1 1/2' (Jii (Jii Var (Ji1:22 X2)) 
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The inequality 

Corr(Xi, (JiI:;-i X2) - Corr(Xi, c'X2) ~ 0 

now follows by choosing 

Consequently, we have 

Cov(Xi, (JiI:;-i X2) 
R i . k +1 ..... n = ( V ( ~ 1X ))1/2 

(Jii ar (Ji~22 2 

D 

For the nonsingular multivariate normal distribution, the multiple correla
tion coefficient given in (3.4.5) is always larger than or equal to zero and less 
than or equal to one. Furthermore, since I:;-i is positive definite (because I:22 
is positive definite), it is equal to zero if and only if (Ji = 0; that is, if and only 
if Xi and X2 are independent. 

Since (Xi' (JiI:;-iX2)' has a bivariate normal distribution with means Jii, 
(JiI:;-iJ12' variances (Jii, (JiI:;-i (J;, and correlation coefficient R i . k+1 ..... n' the 
conditional distribution of Xi' given (JiI:;-ix2' is normal with variance 

(3.4.7) 

This is the smallest possible variance of the conditional distribution of Xi' 
given C'X2 = c'x2, where c is a nonzero real vector, and is obtained when c' 
is chosen to be (JiI:;-i. 

3.4.3. Partial Correlation Coefficients 

The partial correlation coefficient between two random variables is their 
correlation coefficient after allowing for the effects of a set of other variables. 
For i,j = 1, ... , k, i i= j, if we consider the correlation between Xi and Xj' when 
X2 = (Xk+1' ... , Xn)' is fixed, then this correlation coefficient can be obtained 
from the conditional distribution of (Xi' Xl, given X2 = x2. 

Definition 3.4.3. Let X be partitioned as in (3.3.1). Then for given X2 = X2 the 
partial correlation coefficient between Xi and Xj is 

Cov«Xi, Xj)IX2 = x2) 
Pij·k+1 ..... n = (Var(XiIX2 = x2) Var(Xj1X2 = X2))1/2 

for i, j = 1, ... , k, i i= j. 
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For the general case, the partial correlation coefficient might depend on 
X2. But for the multivariate normal distribution the result is quite simple, 
depending only on the elements of the covariance matrix. 

Theorem 3.4.3.1f X '" .,¥,,(p, ~), ~ > 0, and the components of X are partitioned 
as in (3.3.1), then 

O"ij - O"i~2J 0"] 
(3.4.8) 

for i,j = 1, ... , k, i =F j. 

PROOF. By Theorem 3.3.4, the conditional distribution of Xl' given X2 = X 2 , 

is normal with the conditional covariance matrix ~11·2 = ~12 - ~12~2J~21. 
Thus by Theorem 3.3.1 the conditional distribution of (Xi' Xj)', given X2 = X 2 , 

is bivariate normal with the conditional covariance matrix 

o 

Note that the partial correlation coefficient in (3.4.8) is nonnegative if and 
only if O"ij ~ O"i~2J Gj. Thus it is possible to have a covariance matrix ~ such 
that the correlation coefficient between Xi and Xj (which is Pij = O"i) J O"iiO"jj) 
is positive while the partial correlation coefficient is negative. As an illustration 
consider the following example: 

EXAMPLE 3.4.1. Let X = (Xl' X 2 , X 3 )' be distributed according to an %3(0, ~) 
distribution, where O"ii = 1 (i = 1,2,3) and 0"12 = 1 - 2e, 0"13 = 0"23 = 1 - e, 
0< e < !. For every fixed c = (C1, C2, C3)' E 913 we have 

(a) C/~C = (ci + d + d) + 2(1 - e)(c1c2 + C1C3 + C2C3) - 2ec1c2 

= (1 - e)(c1 + C2 + C3)2 + e(c1 - C2)2 + ec~. 
Since C/~ ~ 0 holds, and the equality holds if and only if C1 = C2 = C3 = 0, 
~ is a positive definite matrix. 

(b) The conditional distribution of (Xl' X 2 )', given X3 = X3, is bivariate 
normal with the covariance matrix 

( 1 1 - 2e) 2 (1 ~11·2= 1-2e 1 -(l-e) 1 1) = e(2 - e -e). 
1 -e 2 - e 

Thus P12 = 1 - 2e > 0 and P12.3 = -e/(2 - e) < o. o 

3.4.4. Canonical Correlation Coefficients 

The theory of canonical correlation was developed by Hotelling (1936), and 
may be regarded as a generalization of the notion of the multiple correlation. 
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Let us again consider the partition of X into Xl and X2, defined in (3.3.1), 
where Xl = (Xl' ... , X k )' and X2 = (Xk+l' ... , Xn)'. Recall that the multiple 
correlation coefficient between Xi and X2 is the largest possible correlation 
coefficient between Xi and c'X2 over all possible choices of real vectors c, where 
1 ~ i ~ k is fixed. In canonical correlation analysis we are interested in finding 
two real vectors cl , c2 such that the correlation coefficient between C'lXl and 
C~X2 is maximized. 

This maximization process can be carried out in the following fashion: 
First, we choose C2 to maximize the correlation coefficient between C/l Xl and 
C~X2 for fixed cl , then we find its maximum over all possible choices of Cl. 
Second, we choose Cl to maximize the correlation coefficient between C~X2 
and C/lXl for fixed C2' then we find the optimal solution for C2. Mter completing 
these two steps we then choose the larger of the two resulting correlation 
coefficients. 

Now, for every fixed Cl and Xo = C/l Xl (say), the best choice of c~ is simply 
the regression vector of X2 on Xo. Thus the largest possible correlation 
coefficient is just (C/l 1:121:;tE2l cdc~ 1:11 cd1/2, the multiple correlation coeffi
cient between Xo and X2 • Furthermore, since correlation coefficients are scale 
invariant, without loss of generality it may be assumed that 

(3.4.9) 

Using Lagrange's method of multipliers, this amounts to the maximization of 

(3.4.10) 

subject to the constraint in (3.4.9). Mter taking partial derivatives with respect 
to the components of C1 and letting them equal zero, we have 

(3.4.11) 

Multiplying the left-hand side of (3.4.11) by C/l and using the identity in (3.4.9), 
we then obtain 

For Cl to have a nontrivial solution in (3.4.11) we must have 

hl (A) = 1- A1:11 + 1:121:2"11:211 = o. 

(3.4.12) 

(3.4.13) 

But h1 (A) is a polynomial of degree k. It' can be verified that (see Anderson 
(1984, p. 483)) if 1: is positive definite, then hl (A) has k nonnegative real roots. 

Similarly, the maximization of the multiple correlation coefficient 
(C~1:21 1:1i 1:l2C2/C~1:22C2)l/2, subject to the constraint 

(3.4.14) 

leads to the equation 

(3.4.15) 
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In order to have a nonsingular solution we must have 

h2 (A) = 1- ..1.1:22 + 1:21 1:1fEd = 0, 

which has n - k nonnegative real roots. 
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(3.4.16) 

Let ..1.1, ..1.2, ... , An be the collection of roots of the two equations h1 (A) = 0 
and h2(A) = 0 and, without loss of generality, assume that 

..1.1 ~ ..1.2 ~ ... ~ An ~ O. (3.4.17) 

Then by (3.4.12) the largest canonical correlation coefficient is simply A. 
The vectors c1 , c2 , which yield this largest canonical correlation coefficient, 
can be obtained from either (3.4.11) or (3.4.15) with ..1.= ..1.1, depending on 
which equation has the root ..1.1' Let (C 1,l' C2,l) denote such a solution. Then 
the random variables C'l,lX1, C~,lX2 are called the first pair of canonical 
variables. 

This process can be continued to find all the Aj values and the corresponding 
canonical variables. Without loss of generality, let 

..1.1 > ..1.2 > ... > Ar ~ 0 

denote the r (r:s; n) distinct roots of h1 (A) = 0 and h2(A) = O. Then A is 
called the jth canonical correlation coefficient, and the corresponding vector 
(C'l,jX1, C~.jX2)' is called thejth pair of canonical variables. Using Lagrange's 
method of multipliers it can be shown that (see Anderson (1984, p. 484)) the 
vectors {Cl,J'i=l' {c2,j }'i=1 also satisfy the conditions, for all s =1= t, 

(i) C'l,SX1 and C'l,tX1 are independent, (3.4.18) 

(ii) C 2,sX2 and C~,tX2 are independent, (3.4.19) 

(iii) c'l,sX1 and C~,tX2 are independent. (3.4.20) 

Summarizing the above result, we say 

Definition 3.4.4. Let X be partitioned as in (3.3.1), and let 

C 1. j ,C2 ,j 

subject to (3.4.18)-(3.4.20) and the condition 

c'l,j1: l1 C1 ,j = C~,j1:22C2,j = 1. 

The distinct values, 1 > '2 > ... > 'r (r :s; n) are called the canonical correla
tion coefficients between Xl and X2. 

If X is a nonsingular Ji!;.(J1, 1:) variable, then 1:11 and 1:22 are both non
singular. Thus we obtain 

Theorem 3.4.4. If X ~ Ji!;.(J1, 1:),1: > 0, and X is partitioned as in (3.3.1), then 
the jth canonical correlation coefficient between Xl and X2 is A,j = 1, ... , r, 
whereA1 :> ..1.2 > ... > Ar ~ 0 are the r distinct roots of h1 (A) = 0 and h2(A) = 0, 
defined in (3.4.13) and (3.4.16), respectively. 
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3.4.5. Principal Components 

Principal component analysis, originally proposed and studied by Hotelling 
(1933), concerns a method for obtaining a set of linear combinations of 
components of an n-dimensional random variable with certain desirable 
properties. Suppose that X '" .;v,,(p, I:), I: > O. When the X;'s are independent, 
then a measure of dispersion ofthe distribution of X is the sum ofthe variances 
(which are the diagonal elements of I:). Furthermore, the larger the variance 
of Xi' the more it contributes to this dispersion. Thus the problem of interest 
is to define and obtain the principal (or the most influential) components with 
large variances when the X;'s are correlated. In this case it is not adequate just 
to consider each of the components separately because they tend to hang 
together. 

In principal component analysis, we look for linear combinations of the 
X;'s such that the variances are maximized under certain constraints. Let 
C'l = (CII' .•• , Cln) be a real vector such that C'1 C1 = 1 and 

sup Var(rx'X) = Var(c/1 X). 
{0I:0I'0I=1} 

Then C1 is the vector with norm 1 such that the variance of c/1 X is maximized 
over all linear combinations of the components under this constraint. To find 
C1 note that Var(rx/X) = rx/I:rx for all rx. Thus, by Lagrange's method of multi
pliers, this amounts to maximizing the function 

gl (rx, A) = rx/I:rx - A(rx' rx - 1), 

subject to rx' rx = 1. By calculus it follows that 

o 
orx g1 (rx, A) = 2(I:rx - Arx) = 2(I: - AIn)rx, 

where In is the n x n identity matrix. The system of linear equations 
(O/Orx)gl (rx, A) = 0 has a nontrivial solution if and only if 

h(A) == II: - AInl = 0 (3.4.21) 

holds. Thus A must be an eigenvalue of I:. Furthermore, if c i satisfies 
2(I: - AIn)c1 = 0 then, by rx' rx = 1, we must have 

(3.4.22) 

and 
(3.4.23) 

Thus A is actually the variance of c1 X == Yl. Let Al denote the value of this A. 
After Y1 and Al are obtained, we then look for another randm variable 

Y2 = c~X such that: 

(i) C~C2 = 1; 
(ii) Y2 is independent of Y1 ; and 
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(iii) Y2 has the largest variance among all linear combinations of components 
of X that satisfy (i) and (ii). 

If tX is any vector that satisfies (i) and (ii), then tX'tX = 1 and, by (3.4.22), 

(3.4.24) 

that is, tX and Cl must be orthogonal. Applying Lagrange's method of multipliers 
one more time leads to the maximization of the function 

g2(tX, A, 11) = tX'~tX - A(tX'tX - 1) - 11tX'~l' 

subject to tX'tX = 1 and (3.4.24). By 

a 
otX g2 (tX, A, 11) = 2(~tX - AtX - 11~l) 

and (3.4.24) it follows that if c2 is a solution of (O/otX)g2(tX, A, 11) = 0, then 

c~ ~C2 - AC'l c2 - 11C'l ~l = - 11C'l ~l = 0, 

Cl~2 - ACl C2 - 11Cl~l = o. 
Thus we have 11 = O. This implies that c2 and A also satisfy the equations 

A = Cl~C2' (~ - Aln)c2 = O. 

Consequently, if C2 has a nontrivial solution, then A also satisfies (3.4.21). Let 
the value of this A be denoted by A2. 

It is known that if~ is an n x n positive definite matrix, then it has n positive 
real eigenvalues. Let A10 ... , An be the eigenvalues and, without loss of gener
ality, assume that 

(3.4.25) 

Then using a similar argument we can continue this process to find n real 
vectors Cl , C2, ... , Cn such that: 

(i) c;ci = 1 (i = 1, ... , n); 
(ii) c;cj = 0 for all i :F j; and 
(iii) the variance of l'i = c;X is Ai (i = 1, ... , n). 

Expressing the linear transformation in a matrix form we have 

Theorem 3.4.5. Let X '" .¥,,(p, ~), ~ > 0, and let A10 ... , An be the eigen
values of ~ satisfying (3.4.25). Then there exists an orthogonal matrix C = 
(c l , c2 ,·.·, cn) satisfying Y = C'X '" .¥,,(C'p, D), where D = (du) is a diagonal 
matrix such that dii = Ai (i = 1, ... , n). 

We now provide a formal definition of the principal components of X when 
it has a multivariate normal distribution. 

Definition 3.4.5. Let X'" .¥,,(p, ~), ~ > 0, and let Y = (Yl , ... , y")' be the 
random variable defined in Theorem 3.4.5. Then l'i is said to be~ the ith 
principal component of X (i = 1, ... , n). 
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Remark 3.4.1. If the components are independent, then 1:: is already a diagonal 
matrix. In this case, Yl is the component of X with the largest variance, Y2 is 
the component of X with the second largest variance, and so on; and c; = 

(0, ... ,0, 1,0, ... ,0) which has a "1" in one of the n positions. 

Remark 3.4.2. As a measure of the contributions to the sum of the variances 
of the ¥;'s, the ratios Ad'f)=l Aj (i = 1, ... , n) are of interest. In particular, 
AdLi'=l Aj represents the contribution of the first principal component of X. 

We note in passing that applications of the results of principal component 
analysis are not limited to the multivariate normal distribution because Theo
rem 3.4.5 does not require the assumption of normality. 

3.4.6. An Example 

We complete this section with an example. 

EXAMPLE 3.4.2. Let n = 5, k = 2, and X", .!V5(p, 1::). Consider the partition 
Xl = (Xl' X 2 )', X2 = (X3 , X 4 , Xs)', 

where 

1:: = (1 P2) 
11 1 ' P2 

~ _~, _ (Pl Pl Pl) 
"'"'12 - "'"'21 - , 

Pl Pl Pl 

and 0 ::::; Pl ::::; P2 < 1. That is, the random variables are partitioned into two 
groups; the correlation coefficients within each group are P2, and the correlation 
coefficients between groups are Pl' 

(a) X is a nonsingular normal variable, i.e., 1:: > O. To see this, for all 
nonzero vectors c' = (Cl, C2, c3 , C4, cs) i= O,we have 

c'1::c 

5 

= L cf + 2P2(C1 C2 + C3(C4 + cs) + c4CS ) + 2Pl(Cl + C2 )(C3 + C4 + cs) 
i=l 

= ( .jP; i~ C)2 + (P2 - pd«Cl + C2)2 + (C3 + C4 + CS)2) + (1 - P2) i~ cr 
>0. 
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(b) Simple calculation shows 

1 (1 + P2 
1:2"1 = -P2 

(1 + 2P2)(1 - P2) 
-P2 

Thus 

1 ( 1 + 2P2 - 3pt 
= 2 2 

1 + 2P2 P2 + 2P2 - 3P1 

-P2 

1 + P2 
-P2 

-P2 ) 
-P2 . 

1 + P2 

P2 + 2pl- 3Pt). 
1 + 2P2 - 3pt ' 
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(3.4.26) 

and the conditional distribution of Xl' given X2 = X 2 , is normal with mean 
vector 

P1 5 

( 
fl1 + 1 + 2 L (Xj - fli)) P2 ;=3 

P1 5 
fl2 + 1 + 2 L (Xj - flj) 

P2 J=3 

and covariance matrix 1:11 .2 given in (3.4.26). 
(c) The best predictorfor Xi (i = 1,2), given (X3' X4, Xs)' = (X3' X4' xs)', is 

P1 5 
~i = fli + 1 2 L (Xj - flj)· + P2 j=3 

(d) The multiple correlation coefficient between Xi and X2 is 

.j3P1 
Ri.34S = J1 + 2P2' 

i = 1,2, 

and Ri.34S = 0 if and only if P1 = O. When P1 = P2 = p, it becomes 
.j3p/JT+2P. 

(e) The partial correlation coefficient between Xl and X2 is 

P2 + 2pl- 3pt 
P12·34S = 1 + 2 3 2 ' P2 - P1 

and is equal to P2 when (Xl' X 2)' and (X3' X4, Xs)' are independent. When 
P1 = P2 = p, it reduces to p/(1 + 3p). 

(f) The determinants ofthe matrices -XEll + 1:121:2"11:21 and -21:22 + 
1:21 1:1} 1:12 are, respectively, 

[ 6pt ] 
h1 (2) = (1 - P2)2 (1 + P2)2 - 1 + 2P2 ' (3.4.27) 

(3.4.28) 
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Thus h1 (A) = 0 and h2(A) = 0 have a common unique positive root ,1,1 = 
6pfj((1 + P2)(1 + 2P2)) and all the other roots are zero. Consequently, it 
follows that: 

(i) the largest canonical correlation coefficient between Xl and X2 is 
j6pdJ(1 + P2)(1 + 2P2)' which is j6pjJ(1 + p)(1 + 2p) when P1 = 
P2 = P; 

(ii) the canonical variables that yield this canonical correlation coefficient 
can be obtained by either finding a solution for C1 in (3.4.11) or finding a 
solution for C2 in (3.4.15), with A = ,1,1; 

(iii) all other pairs of canonical variables that are uncorrelated with (hence 
independent of) the first pair must also be independent. 

This is so because all other canonical correlation coefficients are zero. 

(g) It is straightforward to verify that 

II: - A1sI = (1 - ,1,- P2)3[(1 - A + P2)(1 - A + 2p2) - 6pf]. (3.4.29) 

Thus the eigenvalues of I: are 

,1,1 = 1 + tP2 + t(p~ + 24pf)1/2, 

,1,2 = 1 + tP2 - t(p~ + 24pt)1/2, 

,1,3 = ,1,4 = As = 1 - Pz· 

In the special case when P1 = pz = p, we have 

,1,1 = 1 + 4p, 

and a set of solutions for Ci in (I: - Ails)ci = 0 is 

and 

1 
c~ = 11r\( -4 1 1 1 1), 

y20 

I _ 1 
c4 - j6(0 0 -2 1 1), 

I 1 
Cs = j2(0 0 0 -1 1). 

Thus the orthogonal matrix C = (c1 Cz c3 C4 cs)' satisfies the condition that 
Y = C'X '" Ns(C'I1, D), where D is the diagonal matrix with diagonal ele
ments ,1,1' ... ' As· The components ofY, ~ = c;X (i = 1, ... ,5), are the principal 
components of X. When P1 = pz = p, the variance of the first principal com
ponent Y1 = c'1 X is ,1,1 = C'1 I:C1 = 1 + 4p, and its contribution to the sum of 
the variances of the principal components is 20(1 + 4p )%. 0 
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3.5. Sampling Distributions 

For fixed positive integer N let Xl' ... , XN be a random sample of size N from 
an ~(11, 1:) distribution, that is, Xl' ... , XN are i.i.d. random variables with a 
common ~(11, 1:) distribution. Let 

_ 1 N _ _ 

XN = - LXI = (Xl' ... , Xn)', 
N 1=1 

( 

Sl1 S12 ... Sln) 
S = S21 S22 .. . S2n 

Sn1 Sn2 Snn 

(3.5.1) 

(3.5.2) 

denote the sample mean vector and the sample covariance matrix, respectively, 
where 

_ 1 N 

Xi =- LXiI' 
N 1=1 

(3.5.3) 

(3.5.4) 

for i,j = 1, ... , n (Xii is the ith component of Xl)' After arranging Xl'"'' XN 

in a matrix form by defining the n x N data matrix 

(3.5.5) 

the sample covariance matrix can be expressed as 

(3.5.6) 

By the identity 

(3.5.7) 

where IN is the N x N identity matrix and IN is the N x N matrix with 
elements one, we can write 

S = _1_X(IN - 1 IN)Xf. (3.5.8) 
N-1 N 

Note that S is symmetric, thus it involves only n(n + 1)/2 random variables. 
It is known that for N> n (XN' (N - 1)S/N) is the maximum likelihood 

estimator of (11,1:) (see Anderson (1984, Sec. 3.2)). Furthermore, almost all of 
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the useful inference procedures in multivariate analysis depend on the data 
matrix X only through (iN' S). Thus the (marginal and joint) distributions of 
XN and S are of great interest. 

3.5.1. Independence ofXN and S 

Before deriving their distributions we first observe a basic fact. For the 
univariate normal distribution, it is well known that the sample mean and the 
sample variance are independent. We show below that a similar statement 
holds for the multivariate normal distribution. 

Theorem 3.5.1. For N > n, let Xl, ... , XN be U.d. v¥,,(Ji, l:) variables, l: > O. Let 
XN and S be defined as in (3.5.1) and (3.5.2), respectively. Then XN and S are 
independent. 

There exist two independent proofs for this result. 

FIRST PROOF. The proof depends on the following known result: Let X be 
defined as in (3.5.5), and let C l , C2 be two given N x N symmetric real 
matrices. If C l C2 = 0, then the quadratic forms XCl X' and XC2 X' are inde
pendent. (See, e.g., Anderson and Styan (1982); a less general result ",as given 
earlier by Craig (1943).) Thus, by (3.5.7), (3.5.8) and 

(~IN)(IN- ~IN)=O, 
XNX~ and S are independent. Consequently, XN and S are independent. 0 

SECOND PROOF. The second proof depends on an orthogonal transformation 
of the elements of X. For every fixed N ~ 2 there exists an N x N orthogonal 
matrix C = (crt) satisfying 

1 
CNl = ... = CNN = )N' (3.5.9) 

Since CC' = C'C = IN' we must have 

for all r, (3.5.10) 

and 

for all r # s. (3.5.11) 

This implies 

for all r < N. (3.5.12) 
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Let us define an n x N random matrix Y by 

or equivalently, Y'=CX'. 

Obviously, the joint distribution of the nN elements of Y is multivariate 
normal. Their means, variances, and covariances can be obtained from (3.5.9)
(3.5.12): 

(i) For 1 :S i :S nand 1 :S r :S N - 1, 

N N 

EY;r = L crtEXit = J-li L Crt = O. 
t=1 t=1 

(ii) For 1 :S i,j :S nand 1 :S r :S N, 

Cov(Y;" Yjr) = Cov C~ Crt XiI' t~ CrtXi ) 

N 

= L C~ COV(Xit' Xit) 
t=l 

which is the (i, j)th element of 1:. 
(iii) For 1 :S r < s :S N, 

Cov(y;" YjJ = Cov C~ Crt XiI' t~ CstXi ) 

N 

= L Crt Cst COV(Xit' Xit) 
t=l 

=0. 

It is easy to verify that the last row of Y', and hence the transpose of the 
last column of Y, is 

Combining (i)-(iii) with this fact we conclude that: The column vectors 
Y u ... , Y N-1 of Yare i.i.d. JY;.(O, 1:) variables and are independent of its last 
column (which is jNx and thus has an JY;.(jNJ1, 1:) distribution). Now by 
C'C = IN we have XX' = YY'. But we also have 

N-1 

YY' = L YtY; + NXNX'rv, 
t=l 

and (by (3.5.6)) 
(N - 1)8 = XX' - NXNX'rv. 

Thus (N - 1)8 and L~=11 Y t Y; are identically distributed. Consequently, 8 and 
XN are independent. 0 

Remark 3.5.1. It should be pointed out that, although the statement of Craig'S 
(1943) result is correct, his proof contains an error that cannot be patched up 
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easily. Correct proofs seem to be first obtained independently by Ogawa (1949) 
and P.L. Hsu (Fang, 1988). For details, see Anderson ad Styan (1982) and 
Fang and Zhang (1988, Sec. 2.8). 

This useful by-product, obtained in the second proof of Theorem 3.5.1 and 
stated below, will be applied to derive the Wishart distribution and the 
Hotelling T2 distribution. 

Proposition 3.5.1. Let Xl' ... , XN be i.i.d . .K,,(Jl, 1:) variables, 1: > 0, and let 

1 (N __ ) S=-- L XtX;-NXX' 
N - 1 t=l 

be the sample covariance matrix. Then Sand (N - 1)-1 L~11 YtY; are identically 
distributed where Y l' ... , Y N-1 are U.d . .K,,(O, 1:) variables. 

3.5.2. Sampling Distributions Concerning XN 

In view of the fact that XN and S are independent, their joint distribution is 
uniquely determined from the marginal distributions. 

For the univariate normal case, it is well known that X N and N(XN - f.1)2/(J2 
are, respectively, %(f.1, (J2/N) and X2(1) variables. We show that similar results 
hold for the sample mean vector XN of a multivariate normal distribution. 

Theorem 3.5.2. Let Xl, ... , XN be U.d . .K,,(Jl, 1:) variables, 1: > 0, and XN be the 
sample mean vector defined in (3.5.1). Then XN has an .K,,(Jl, (1/ N)1:) distribution. 

PROOF. Immediate by Corollary 3.3.4. o 

Theorem 3.5.3. Under the conditions stated in Theorem 3.5.2, 
N(XN - Jl),1:-1 (XN - Jl) has a x2(n) distribution. 

PROOF. Let C be a nonsingular n x n matrix such that C1:C' = In (the existence 
ofC follows from Proposition 3.2.1). Let Z = .jNC(XN - Jl). Then, by Theo
rems 3.5.2 and 3.3.3, Z has an .K,,(O, In) distribution; thus Z'Z has a x2 (n) 
distribution. But by .jN (XN - Jl) = C-1 Z we have 

N(XN - Jl),1:-1(XN - Jl) = Z'C- lr1:-1C- 1 Z 

= Z'(C1:C')-lZ 

= Z'Z. 

Consequently, N(XN - Jl),1:-1(XN - Jl) also has a x2 (n) distribution. 0 
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3.5.3. The Wishart and Related Distributions 

The Wishart distribution is the joint distribution of the n(n + 1)/2 variables 
(N - I)Sij' 1 ::;; i::;;j::;; n, which are elements of the random matrix (N - I)S. 
The density function of this distribution is given in the following theorem. 

Theorem 3.5.4. Let Xl' ... , XN be i.i.d. JV;.(J!, 1:) variables, 1: > O. Let S be the 
sample covariance matrix defined in (3.5.2). Then for N > n, the density function 
of W = (N - I)S is 

I I(N-n-2)/2 
I" () _ CN- 1 W -trl:- 1w/2 
Jl:,N-1 W - 11:I(N 1)/2 e (3.5.13) 

for w in the set of all n x n positive definite matrices and 0 otherwise, where 

[ 
n (N ')J-1 CN- 1 = 2n(N-1)/2 n n(n-1)/4)] r ; ) (3.5.14) 

There exist many different methods and approaches for deriving this den
sity function. Wishart's (1928) original proof has a strong geometric flavor. 
Other proofs were given by Mahalanobis, Bose, and Roy (1937), Hsu (1939), 
Olkin and Roy (1954), and others. In view of Proposition 3.5.1 we may 
consider the distribution of the random matrix W = YY', where Y 1, ... , Y N-1 

are i.i.d. JV;.(O, 1:) variables and Y = (Y 1, ... , Y N-1)' The proof adopted here 
depends on the following lemma give in Anderson (1984, p. 533): 

Lemma 3.5.1. If the density function of the n x (N - 1) random matrix Y is 
g(yy'), then the density function of W = YY' is 

n(1/2)n[(N-1)-(n-1)/21Iwl(N-n-2)/2g(w) 

f(w) = n • 

n q(N - j)/2) 
j=1 

The proof of this lemma involves the joint distribution of the characteristic 
roots ofW, as shown in Anderson (1984, p. 533). 

PROOF OF THEOREM 3.5.4, The joint density function of Y = (Y l' ... , Y N-d' is 
N-1 1 ( ) - n -y,l:-ly,/2 

g Y - t=l (2ntI211:11/2 e 

( 1 N-1 ) = [(2n)"(N-1)/211:I(N-1)/2r1 exp -- L y;1:-1 Yt 
2 t=l 

= [(2n)n(N-1)/211:I(N-1)/2r1e-trl:-lYY'/2, 

The statement now follows immediately from Lemma 3.5.1. D 

A special case of interest for 1: = In in Theorem 3.5.4 is: 
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Corollary 3.5.1. Let Xl' ... , X N be U.d . .¥,,(Ji, In) variables and let 8 = (Si) be 
the sample covariance matrix. Then for N > n, the density function of (N - 1)8 
is 

(3.5.l5) 

for w in the set of all n x n positive definite matrices, and 0 otherwise, where 
CN - 1 is the constant defined in (3.5.l4). 

A problem of great importance concerns the distribution of a transforma
tion of the submatrices of a Wishart matrix. Let Y l' ... , Y N-1 be Li.d . .¥,,(O, 1:) 
variables such that, for t = 1, ... , N - 1, Yt is partitioned as 

Y t = (~:::) - .¥" ( 0,1: = (~:: ~::)), (3.5.l6) 

where Y l,t is k x 1 and Y 2,t is (n - k) x 1. Consider the corresponding parti
tion of W = YY' given by 

W = (W11 W 12), 
W 21 W 22 

(3.5.l7) 

where W 11 , W 12 = W~l' and W 22 are, respectively, k x k, k x (n - k), and 
(n - k) x (n - k). Clearly, we have 

Wii = (Yi,l'" Y i ,N-1)(Yi ,l'" Y i ,N-1)', i = 1,2 

and 
W 12 = (Yl,l'" Yl,N-1)(Y2 ,l'" Y 2 ,N-1)" 

The following lemma concerns the distribution of the matrix W 11 

W 12 W2'iW21 • 

Lemma 3.5.2. Let Y 1'.:,...' Y N-1 be defined as in (3.5.16) and let W be partitioned 
as in (3.5.l7). If 1: > 0, then V = W 11 - W 12 W2'i W 21 and D~11)-(n-k) V t U; 
are identically distributed where V l' "., V(N-1)-(n-k) are U.d . .Atk(0, 1:11 . 2) 
variables and 1:11 '2 = 1:.11 -1:121:2'i1:21 • 

PROOF. For given Y 2t = Y2t the conditional distribution of Y 11 is 
.Atk(Bx2t , 1:11 '2) for t = 1, ... , N - 1, where B = 1:121:2'i is the regression 
matrix (Theorem 3.3.4). We show that for given Y21"'" Y2,N-1 the conditional 
distribution of 

and the distribution of Ll~11)-(n-k) V t V; are identical, where 

N-1 

W22 = L Y2tY~t 
t=l 
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and T is a k x (n - k) random matrix given by 

( N-l ) 
T = L Y ltY~, w2"~. 

1=1 

The lemma then follows from the fact that the underlying conditional distribu
tion does not depend on the Y2,'S. The proof given below, which follows the 
steps of Anderson's (1984, pp. 130-131) pFoof, depends on an orthogonal 
transformation of the matrix 

y = (YllY12"'Yl,N-l) = (Y(l») 
Y21 Y22 ... Y2,N-l y(2) 

when the Y 2,'S are given. The basic idea is similar to that in the second proof 
of Theorem 3.5.1, except that it is more general. 

Let C be a nonsingular matrix such that CW22 C' = In- k and, for given 
y(2) = (Y21"'" Y2,N-d, let G2 = Cy(2) or, equivalently, y(2) = C-1G2. Then 

G2G~ = Cy(2)(y(2»),C' 

= CW22C' = In- k· 

By Anderson (1984, p. 598), there exists an «N - 1) - (n - k)) x (N - 1) 
matrix G l such that 

is an orthogonal matrix. Now consider the orthogonal transformation of the 
matrix Y given by 

U = (Ul , ... , UN-d = Y(1)G', 

or, equivalently, y(l) = Gu. Clearly, we have 
N-l 
L U,U;=UU' 
1=1 

= Y(l)G'G(Y(l»)' = y(l)(Y(l))'. 

(3.5.18) 

On the other hand, by T = y(1)(y(2»)'w2"~ and TW22 T' = (TW22 T')" we have 

TW22 T' = (GU(C-1G2),w2"hC-1G2)(GU)'), 

= U(GG~)(CW22C'rl(G2G')U' 

= U(In~J(O In-k)U' 

N-l 
= LU,U;. 

I=N-(n-kl 

Th" l' h "N-ly Y' T T' d,,(N-ll-(n-kluu' 'd . 11 1S 1mp 1es t at L.,1=1 11 11 - W22 an L.,1=1 t I are 1 entlca y 
distributed. By (3.5.18) and the fact that G is an orthogonal matrix, it is easy 
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to verify that V 1, ... , V(N-l)-(n-k) are independent .!Vk(O, :Ell. 2) variables. 
Hence Lemma 3.5.2 follows. D 

Combining Proposition 3.5.1 and Lemma 3.5.2 we immediately have 

Theorem 3.5.5. Let Xl' ... , X N be U.d . .K,,(p, :E) variables and let 8 be the sample 
covariance matrix defined in (3.5.2). For fixed 1 :s; k < n, let 8 be partitioned as 

8 = (811 8 12), 
821 822 

where 8 11 , 812 = 8'21' and 822 are, respectively, k x k, k x (n - k), and (n - k) x 
(n - k). If N > n, then 

(3.5.19) 

d ,,(N-l)-(n-k) V V' ·d . II d· ·b d h V V an L.,1=.1 I I are I entlca y lstrz ute were 1, ... , (N-l)-(n-k) are 
i.i.d . .!Vk(O, :Ell . 2) variables ad :Ell .2 =:Ell - :E12:E2~:E21. Consequently, the 
density function of V can be obtained by substituting (i) :Ell . 2 for :E, (ii) 
N - (n - k) for N, and (iii) k for n in the density function given in (3.5.13). 

Of special interest is the case :E12 = 0. This result is stated below and will 
be used to derive the distribution ofthe sample multiple correlation coefficient. 

Corollary 3.5.2. Let Xl' ... , X N be U.d . .K,,(p, :E) variables,:E > 0, and:E12 = 0. 
Then: 

(a) V in (3.5.19) is distributed as Ll~l1)-(n-k) VIV;, and (N - 1)812S2~821 is 
distributed as L~=-J-(n-k) VI V;, where V 1, ... , V N-l are i.i.d . .K,,(O, :Ell) 
variables; and . 

(b) V and 81282~821 are independent. 

Note that in (3.5.19) the random matrix V is properly defined only if 822 
is invertible with probability one. This is possible when 8 itself is invertible 
with probability one. A more important question is whether 8 is positive 
definite (in symbols 8 > 0) which, of course, implies that 8 is invertible. The 
answer to this question is given below. 

Theorem 3.5.6. Let Xl' ... , X N be U.d . .K,,(JI., :E) variables, :E > 0, and let 8 be 
the sample covariance matrix defined in (3.5.2). Then P[8 > 0] = 1 holds if and 
only if N > n. 

PROOF. The proof given here is due to Dykstra (1970). Note that the assump
tion of normality is not needed, so that the statement also holds for other 
multivariate distributions. 

By Proposition 3.5.1, (N - 1)8 and L~=l? VIV; = VV' are identically 
distributed where V 1, ... , V N-l are i.i.d. .K,,(O,:E) variables and V = 
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(U l , ... , UN-I)' Thus, it is equivalent to showing that P[UV' > OJ = 1 
holds if and only if N > n. Scheffe (1959, p. 399) states that: 

(i) U and UV' have the same rank; and 
(ii) UV' > 0 (UV' is positive semidefinite) if and only if the rank of U is n 

(is < n). 

If N < n, then clearly the rank of U is < n. On the other hand, since 

rank(U l , ... , Urn)::::;; rank(U l , ... , Urn+d 

for all m ;:::: n, it suffices to show that 

P[rank(U l , ... , Un) < nJ = O. 

For every fixed i = 1, ... , n, and for given 

let B;(u(i») be the subspace spanned by u(i). Then by I: > 0, 

P[Ui E Bi(u(i»)J = 0 

holds for all uU) except perhaps on a set of probability zero. Consequently, 

P[rank(U l , ... , Un) < nJ = P[U l , .. ·, Un are linearly dependentJ 
n ::::;; L EP[U i E Bi(u(i»)!U(i) = U(i)J 

i=l 

=0. 

3.5.4. Hotelling's T2 Distribution 

o 

When applying Theorem 3.5.2 or 3.5.3 to make statistical inference on J1 based 
on XN , the covariance matrix I: must be known. If I: is unknown, then a new 
statistic (a generalization of Student's t statistic) is needed. This was proposed 
and studied by Hotelling (1931): The statistic 

(3.5.20) 

is called Hotelling's T2 statistic. Note that, by Theorem 3.5.6, S is positive 
definite with probability one, so that S-l is positive definite and T2 is a 
properly defined quadratic form with probability one. 

Theorem 3.5.7. Let Xl' ... , XN be i.i.d. ~(J1, I:) variables, I: > O. Let X and S 
be the sample mean vector and sample covariance matrix, respectively, and 
let T2 be given in (3.5.20). Then for N > n, ((N - n)/((N - 1)n))T2 has an 
F(n, N - n) distribution. 

Remark 3.5.2. We first note that the distribution of T2 is invariant under the 
transformation Zt = HXt + b (t = 1, ... , N) where H is any nonsingular n x n 
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matrix and b is any real vector. The fact that it does not depend on b is easy 
to verify. TQ show that it also does not depend on H, suppose that Jl = b = ° 
and Zt = HXt • Then ZN = HXN and Z = (Zl' ... , ZN) = H(Xl' ... , XN) = 

HX. Consequently, 

(N - l)Sz = ZZ' - NZNZ~ 

= H(XX' - NXNX~)H', 

and this implies 

Z~SZl ZN = (N - l)X~H'H'-l(XX' - NXNX~)-l H-1 HXN 

= X~SilXN' 

PROOF OF THEOREM 3.5.7. There are different methods for deriving the distribu
tion of T2. The proof given here, adopted from Anderson (1984, p. 161-162), 
depends on an orthogonal transformation for given XN = xN • After it is shown 
that the conditional distribution of T2 does not depend on xN , the statement 
follows by un conditioning. 

Without loss of generality we may assume that Xl, ... , XN are i.i.d. %.(0, In) 
variables. For given XN = xN let e be an n x n orthogonal matrix such that 

the first row of e is XNjJX~XN' and let the cij's (i = 2, ... , n;j = 1, ... , n) 
depend on xN through the c1/s. Now consider the linear transformation 
U = (Vl' ... , Vn)' = exN , and define B = esC'. Since 

clearly we have 

Vl = JX~XN and Vi=O for i = 2, ... , n. 

Thus we have, for given XN = xN , 

T2 
--- = -, S-l- = U'B-1U = V 2bll 
(N _ 1) xN X N 1 , 

where B-1 = (bij). But 1jb11 = bll - b'lBlibl. Since XN and S are indepen
dent (Theorem 3.5.1) and e depends only on xN , the conditional distribution 
ofB is identical to that of If=11 ZtZ; where the Z/s are i.i.d. %.(0, In) variables. 
Thus by Theorem 3.5.5 (with k = 1), (N - l)jb ll has a chi-square distribution 
with (N - n) degrees of freedom for every fixed vt = X~XN' But NVt = 
NX~XN itself has a chi-square distribution with n degrees of freedom (Theorem 
3.5.3) and is independent of bll . Consequently, 

(N - n) T2 = NVf!n 
(N - l)n ((N - l)jb ll )/(N - n) 

has an F(n, N - n) distribution. D 
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Other results for the distribution of T2 can be obtained by studying the 
random variable . 

Tl = N(XN - JiO),S-l(XN - Jio), 

where f.lo is not necessarily the mean vector of XN • The distribution of T02 
involves a noncentral F distribution, and was given by Bose and Roy (1938), 
Hsu (1938), Bowker (1960), and others. The distribution of T2 can be obtained 
from the distribution of Tl by letting Jio =~Ji (the mean vector of X;) as a 
special case. 

3.5.5. Sample Correlation Coefficients 

To investigate the distributions of the sample multiple correlation coefficient 
and the sample partial correlation coefficient, we once again consiQer the 
partition of the components of an n-dimensional normal variable defined in 
(3.3.1). For fixed N > n, let {Xt}~=1 be a sequence of i.i.d . .A!;.(Ji, 1:) variables, 
1: > 0, and let S be the sample covariance matrix defined in (3.5.2). We consider 
a corresponding partition of this sample covariance matrix given by 

S = (Sl1 S12) = _1_(W11 W12) = _1_W, (3.5.21) 
S21 S22 N - 1 W 21 W 22 N - 1 

where Sl1 is k x k, S12 = S21 is k x (n - k), and S22 is (n - k) x (n - k). 
The population multiple correlation coefficient between Xi and 

(Xk+l' ... , X n )', defined in Definition 3.4.2, can he estitpated by substituting 
Sij's for aij's in (3.4.5). Without loss of generality it may be assumed that i = 
k = 1. (Because otherwise we need to consider only the marginal distribution 
of (Xi' X k +1 , ••• , Xn)' instead of the joint distribution of X.) Then the sample 
multiple correlation coefficient is given by 

~ = (SI S;jS'I)1/2 
1·2 ... n S ' 

11 

(3.5.22) 

where SI = (SI2' ••. , SIn)' It is known that ~1'2 ... n is the maximum likelihood 
estimator of the population correlation coefficient R l' 2 ... n and has certain 
desirable properties. 

In the following theorem we state a result for the distribution of ~1'2 ... n' 

When R 1 •2 ..• n > 0, its density function has several different expressions, and 
the one given here is due to Fisher (1928). Since the proof is quite involved 
algebraically, it is outlined without details. 

Theorem 3.5.8. Let XI' ... , XN be U.d. .A!;.(Ji, 1:) variables, 1: > O. Let ~ = 
~1'2 ... n be the sample multiple correlation coefficient defined in (3.5.22). 

(a) If the population multiple correlation coefficient R 1 .L .n is zero, then 
(N - n)~2/«n - 1)(1 - ~2» has an F(n - 1, N - n) distribution. 
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(b) If R 1 . 2 ... n is not zero, the density function of IF is 

gRZ(r2) 

(1 - r2)(N-n-2)/2(l - R2)(N-1)/2 00 (R2y(r2)(n-1)/2+j-1r2(i(N - 1) + j) 

= r(i(N - n))r(i(N - 1)) j~ j!r(i(n - 1) + j) , 
(3.5.23) 

where R2 = Ri '2 ... n' Thus the density function of f{ is 2rgR2(r2) for r ~ O. 

PROOF. (a) First note the identity 

f{2 S1 S2"iS'1 

1 - f{2 = Sl1 - S1S2iS'1 . 

Since R 1 . 2 ... n = 0 if and only if 1:12 = 0, by Corollary 3.5.2 we immediately 
have: 

(i) (N - I)S1S2"iS't/all has a x2 (n - 1) distribution; 
(ii) (N - I)(Sl1 - S1S2"iS'1)/all has a X2(N - n) distribution; and 

(iii) the two random variables in (i) and (ii) are independent. 

Thus (N - n)f{2/((n - 1)(1 - f{2)) has an F(n - 1, N - n) distribution. 
(b) Without loss of generality assume that J1 = O. 

(i) First, let us consider the conditional distribution of the random variable 
(N - n)f{2/((n - 1)(1 - f{2)) for given 

t = 1, ... , N. 

Since the conditional distribution of X 1t is 

%(a11:2"ix2t , all - a11:2"ia'1 == a11 '2), 

by applying the transformation in the proof of Lemma 3.5.2 we can show 
that(N - I)S1S2"iS'1)/all'2 has a noncentral chi-square distribution with 
n - 1 degrees offreedom and noncentrality parameter (N - 1)ps22P'/all.2, 
where p = a 11:2"i. Thus, for given X2t = X2t (t = 1, ... , N), the conditional 
distribution of(N - n)f{2/((n - 1)(1 - f{2)) is a noncentral F distribution 
with degrees of freedom (n - 1, N - n) and noncentrality parameter 
(N - 1)ps22P'/all.2' 

(ii) By the result in (i) we can write out the joint density function of 
(f{2, X 21 , ... , X 2N)' and then integrate out X21' ... , X2N over the 
(n - 1) N-dimensional space to obtain gR2(r2). D 

The population partial correlation coefficient Pij'k+1, ... ,n defined in Defini
tion 3.4.3 is the correlation between Xi and Xj (1 ~ i < j ~ k) in the conditional 
distribution of (X l' ... , Xk)', given (Xk+1' ... , Xn)' = (Xk+1, ... , xn)'. Now let 
the sample covariance matrix S be partitioned as in (3.5.21). Then for fixed 
(X2t' ... , X nt )' = (x2t> ••• , Xnt )' (t = 1, ... , N) the sample partial correlation co-



Problems 59 

efficient is 

rij ok+1,000,n = )1/2' 
(Siiok+1. 0 on 0 Sjjok+100 on 

Sij ok+1,000,n 

where sijok+1,000,n is the (i,j)th element of the matrix Sll - S12S2"iS21 0 The 
following theorem concerns the distribution of rijok+l, 0 00 ,n0 

Theorem 3.5.9. Let Xl' 00', X N be i.i.d. JV;.(J!, :E) variables, :E > O. Let 

:Ell 02 =:E ll - :E12 :E2"i:E21 = (O"ijok+l,o .. ,n)' 

Let r12 be the sample correlation coefficient between Y1 and Y2 based on a 
random sample of size N - (n - k) from a bivariate normal distribution with 
means 0, variances 1, and correlation coefficient 

p = ( )1/2 . 
O"ii ok+1, 0 •• ,nO"jj'k+1, 0 o.,n 

O"ij ok+1,0 .. ,n 

Then rijok+1,000,n and r12 are identically distributed. 

This result, due to Fisher (1924), can be obtained by applying Theorem 
3.5.5. The details are left to the reader. 

PROBLEMS 

3.1. Let X be any r x m real matrix for r ~ m. Show that XX' is either positive definite 
(p.d.) or positive semidefinite (p.s.do). Furthermore, show that if the rank of X is 
r, then XX' is p.d. 

3.2. Show that 1: is a p.d. matrix if and only if 1:-1 is a p.d. matrix. 

3.3. Show that if 1: is a p.d. matrix, then its determinant is positive. 

3.4. Show that if 1: is a p.d. matrix, thenc1: is a p.d. matrix for all c > O. 

3.5. Show that if 1:1, 1:2 are two n x n p.d. matrices, then 1:1 + 1:2 is a p.d. matrix. 

3.6. Show that if 1:1, ... , 1:m are n x n p.d. matrices, then IJ=l cj 1:j is a p.d. matrix 
for all cj > 0 (j = 1, ... , m). 

3070 Let 1: = (O"i) be a 3 x 3 symmetric matrix such that 

0"12 = o. 
Show that, at least for (0"13 + 0"23) > t 1: is not a p.d. matrix. 

In Problems 3.8-3.10,1: denotes an n x n symmetric matrix; 1:11 and 1:22 are the 
corresponding submatrices defined in (3.3.1). 

3.8. Show that if 1: is p.d., then both 1:11 and 1:22 are p.d. 

3.9. Show that if 1:11 is not p.d., then 1: is not p.d. 

3.1 O. Verify the statement in (3.3.6) cooncerning the inverse of 1:. 
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3.11. Show that if 1: is p.s.d., then there exists a sequence of p.d. matrices {1:t}~l such 
that limt~<Xl1:t = 1:. 

3.l2. Verify the equivalence statements in the proof of Theorem 3.32. 

3.13. Verify the identity in (3.3.18). 

3.14. Let Z ~ %.(0, In). Let Yl = C1Z and Y2 = C2Z where Ci is ki x n, ki S; n 
(i = 1,2). Find a necessary and sufficient condition for the independence of 
Yl , Y2 • 

3.15. Let X be partitioned as in (3.3.l), for fixed k + 1 S; m S; n let Xg") = 
(Xk+l' ... , Xm)'. Let ..1.*(x~m)) be the best predictor of Xi (1 S; i S; k), given Xg") = 
x~m). Show that E((Xi - ..1.*(x~m))flx~m) = x~m)) is a nonincreasing function ofm. 

3.l6. Let X and x~m) be defined as in Problem 3.15, and let Ri .k +1 •...• n be the multiple 
correlation coefficient between Xi and x~m). Show that Ri'k +1, ... ,m is a non
decreasing function of m. 

3.17. Show that the multiple correlation coefficient Ri.k+l ..... n is nonnegative and is 
bounded above by one. 

3.18. Show that the canonical correlation coefficients are nonnegative and are bounded 
above by one. 

3.l9. Verify the statement in (3.4.10). 

3.20. Verify (3.4.27) and (3.4.28). 

3.21. Verify (3.4.29). 

In Problems 3.22-3.28, X = (Xl' X2)' = ((Xl' X 2 ), (X3' X4 ))' is assumed to have 
a multivariate normal distribution with means p" variances u2 , and correlation 
coefficients 

P12 = P34 = P2' Pij= Pi for is; 2 andj ;?: 3, 

where 0 S; Pi S; P2' 

3.22. Find the marginal distributions of Xl and X2. 

323. Find the conditional distribution of Xl given X2 = x2. 

3.24. Find the best predictor ..1.*(x2) of Xl and find E((Xl - ..1.*(X2))2IX2 = x2). 

3.25. Find the multiple correlation coefficient R l .34• 

3.26. Find the partial correlation coefficient P1'2'34' 

3.27. Find the canonical correlation coefficients between Xl and X2 • 

3.28. Find the principal components of X and their variances. 

3.29. Verify the identities in (3.5.6), (3.5.7), and (3.5.8). 

It is known that a sequence ofm-dimensional random vectors {(U1N, ... , UmN)'}N=l 
converges to a constant vector c = (c l' ... , cm)' in probability if and only if {UiN }N=l 
converges to Ci in probability for each i = 1, ... , m. Use this result to establish the facts 
in Problems 3.30 and 3.31. 
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3.30. Let XN denote the sample mean vector from an %.(p" ~) population. Show that 
XN converges to p, in probability as N - 00. 

3.31. Let SN be the sample covariance matrix of a random sample of size N from an 
%.(p,,~) population, ~ > O. Show that SN converges to ~ in probability as 
N-oo. 

3.32. Let W denote a Wishart matrix and W 11 the submatrix defined in (3.5.17). Show 
that W 11 has a Wishart distribution. 

3.33. Verify that in the proof of Lemma 3.5.2, V 1 , ••• , V(N-1)-(n-k) are i.i.d . .A"ic(O, ~11'2) 
variables. 

3.34. Let T2 be Hotelling's T2 statistic defined in (3.5.20). Show that as N - 00, the 
limiting distribution of T2 is x2(n). 

3.35. Let J{ = J{1'2 ... n be the sample multiple correlation coefficient of a random 
sample of size N from an %.(p" ~) population, ~ > O. Show that if R 1'2 ... n = 0, 
then the limiting distribution of NJ{2j(1 - J{2) is x2(n - 1). 

3.36. Show that when n = 2, the distribution of the sample multiple correlation 
coefficient given in Theorem 3.5.8 reduces to that given in Theorems 2.2.1 and 
2.2.2. 

3.37. Complete the proof of Theorem 3.5.9. 


