
Chapter 4

Central Limit Theorems

The main result of this chapter, in Section 4.2, is the Lindeberg-Feller Central Limit Theo-
rem, from which we obtain the result most commonly known as “The Central Limit Theorem”
as a corollary. As in Chapter 3, we mix univariate and multivariate results here. As a general
summary, much of Section 4.1 is multivariate and most of the remainder of the chapter is
univariate. The interplay between univariate and multivariate results is exemplified by the
Central Limit Theorem itself, Theorem 4.9, which is stated for the multivariate case but
whose proof is a simple combination of the analagous univariate result with Theorem 4.12,
the Cramér-Wold theorem.

Before we discuss central limit theorems, we include one section of background material for
the sake of completeness. Section 4.1 introduces the powerful Continuity Theorem, Theorem
4.3, which is the basis for proofs of various important results including the Lindeberg-Feller
Theorem. This section also defines multivariate normal distributions.

4.1 Characteristic Functions and Normal Distributions

While it may seem odd to group two such different-sounding topics into the same section,
there are actually many points of overlap between characteristic function theory and the
multivariate normal distribution. Characteristic functions are essential for proving the Cen-
tral Limit Theorems of this chapter, which are fundamentally statements about normal
distributions. Furthermore, the simplest way to define normal distributions is by using their
characteristic functions. The standard univariate method of defining a normal distribution
by writing its density does not work here (at least not in a simple way), since not all normal
distributions have densities in the usual sense. We even provide a proof of an important
result—that characteristic functions determine their distributions uniquely—that uses nor-
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mal distributions in an essential way. Thus, the study of characteristic functions and the
study of normal distributions are so closely related in statistical large-sample theory that it
is perfectly natural for us to introduce them together.

4.1.1 The Continuity Theorem

Definition 4.1 For a random vector X, we define the characteristic function φX :
Rk → C by

φX(t) = E exp(it>X) = E cos(t>X) + i E sin(t>X),

where i2 = −1 and C denotes the complex numbers.

The characteristic function, which is defined on all of Rk for any X (unlike the moment
generating function, which requires finite moments), has some basic properties. For instance,
φX(t) is always a continuous function with φX(0) = 1 and |φX(t)| ≤ 1. Also, inspection of
Definition 4.1 reveals that for any constant vector a and scalar b,

φX+a(t) = exp(it>a)φX(t) and φbX(t) = φX(bt). (4.1)

Also, if X and Y are independent,

φX+Y(t) = φX(t)φY(t). (4.2)

One of the main reasons that characteristic functions are so useful is the fact that they
uniquely determine the distributions from which they are derived. This fact is so important
that we state it as a theorem:

Theorem 4.2 The random vectors X1 and X2 have the same distribution if and only
if φX1(t) = φX2(t) for all t.

Now suppose that Xn
d→X, which implies t>Xn

d→ t>X. Since both sin x and cos x are
bounded continuous functions, Theorem 2.28 implies that φXn(t) → φX(t). The converse,
which is much harder to prove, is also true:

Theorem 4.3 Continuity Theorem: Xn
d→X if and only if φXn(t)→ φX(t) for all t.

Here is a partial proof that φXn(t) → φX(t) implies Xn
d→X. First, we note that the

distribution functions Fn must contain a convergent subsequence, say Fnk
→ G as k → ∞,

where G : R → [0, 1] must be a nondecreasing function but G is not necessarily a true
distribution function (and, of course, convergence is guaranteed only at continuity points of
G). It is possible to define the characteristic function of G—though we will not prove this
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assertion—and it must follow that φFnk
(t) → φG(t). But this implies that φG(t) = φX(t)

because it was assumed that φXn(t)→ φX(t). By Theorem 4.2, G must be the distribution
function of X. Therefore, every convergent subsequence of {Xn} converges to X, which gives
the result.

Theorem 4.3 is an extremely useful tool for proving facts about convergence in distribution.
Foremost among these will be the Lindeberg-Feller Theorem in Section 4.2, but other results
follow as well. For example, a quick proof of the Cramér-Wold Theorem, Theorem 4.12, is
possible (see Exercise 4.3).

4.1.2 Moments

One of the facts that allows us to prove results about distributions using results about
characteristic functions is the relationship between the moments of a distribution and the
derivatives of a characteristic function. We emphasize here that all random variables have
well-defined characteristic functions, even if they do not have any moments. What we will
see is that existence of moments is related to differentiability of the characteristic function.

We derive ∂φX(t)/∂tj directly by considering the limit, if it exists, of

φX(t + hej)− φX(t)

h
= E

[
exp{it>X}

(
exp{ihXj} − 1

h

)]
as h→ 0, where ej denotes the jth unit vector with 1 in the jth component and 0 elsewhere.
Note that ∣∣∣∣exp{it>X}

(
exp{ihXj} − 1

h

)∣∣∣∣ =

∣∣∣∣∫ Xj

0

exp{iht} dt

∣∣∣∣ ≤ |Xj|,

so if E |Xj| <∞ then the dominated convergence theorem, Theorem 3.22, implies that

∂

∂tj
φX(t) = E lim

h→0

[
exp{it>X}

(
exp{ihXj} − 1

h

)]
= i E

[
Xj exp{it>X}

]
.

We conclude that

Lemma 4.4 If E ‖X‖ <∞, then ∇φX(0) = i E X.

A similar argument gives

Lemma 4.5 If E X>X <∞, then ∇2φX(0) = −E XX>.

It is possible to relate higher-order moments of X to higher-order derivatives of φX(t) using
the same logic, but for our purposes, only Lemmas 4.4 and 4.5 are needed.
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4.1.3 The Multivariate Normal Distribution

It is easy to define a univariate normal distribution. If µ and σ2 are the mean and vari-
ance, respectively, then if σ2 > 0 the corresponding normal distribution is by definition the
distribution whose density is the well-known function

f(x) =
1√

2πσ2
exp

{
− 1

2σ2
(x− µ)2

}
.

If σ2 = 0, on the other hand, we simply take the corresponding normal distribution to be the
constant µ. However, it is not quite so easy to define a multivariate normal distribution. This
is due to the fact that not all nonconstant multivariate normal distributions have densities
on Rk in the usual sense. It turns out to be much simpler to define multivariate normal
distributions using their characteristic functions:

Definition 4.6 Let Σ be any symmetric, nonnegative definite, k×k matrix and let µ
be any vector in Rk. Then the normal distribution with mean µ and covariance
matrix Σ is defined to be the distribution with characteristic function

φX(t) = exp

(
it>µ− t>Σt

2

)
. (4.3)

Definition 4.6 has a couple of small flaws. First, because it does not stipulate k 6= 1, it offers a
definition of univariate normality that might compete with the already-established definition.
However, Exercise 4.1(a) verifies that the two definitions coincide. Second, Definition 4.6
asserts without proof that equation (4.3) actually defines a legitimate characteristic function.
How do we know that a distribution with this characteristic function really exists for all
possible Σ and µ? There are at least two ways to mend this flaw. One way is to establish
sufficient conditions for a particular function to be a legitimate characteristic function, then
prove that the function in Equation (4.3) satisfies them. This is possible, but it would take
us too far from the aim of this section, which is to establish just enough background to
aid the study of statistical large-sample theory. Another method is to construct a random
variable whose characteristic function coincides with equation (4.3); yet to do this requires
that we delve into some linear algebra. Since this linear algebra will prove useful later, this
is the approach we now take.

Before constructing a multivariate normal random vector in full generality, we first consider
the case in which Σ is diagonal, say Σ = D = diag(d1, . . . , dk). The stipulation in Definition
4.6 that Σ be nonnegative definite means in this special case that di ≥ 0 for all i. Now
take X1, . . . , Xk to be independent, univariate normal random variables with zero means
and Var Xi = di. We assert without proof—the assertion will be proven later—that X =
(X1, . . . , Xk) is then a multivariate normal random vector, according to Definition 4.6, with
mean 0 and covariance matrix D.
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To define a multivariate normal random vector with a general (non-diagonal) covariance
matrix Σ, we make use of the fact that any symmetric matrix may be diagonalized by an
orthogonal matrix. We first define orthogonal, then state the diagonalizability result as a
lemma that will not be proven here.

Definition 4.7 A square matrix Q is orthogonal if Q−1 exists and is equal to Q>.

Lemma 4.8 If A is a symmetric k×k matrix, then there exists an orthogonal matrix
Q such that QAQ> is diagonal.

Note that the diagonal elements of the matrix QAQ> in the matrix above must be the
eigenvalues of A. This follows since if λ is a diagonal element of QAQ>, then it is an
eigenvalue of QAQ>. Hence, there exists a vector x such that QAQ>x = λx, which implies
that A(Q>x) = λ(Q>x) and so λ is an eigenvalue of A.

Taking Σ and µ as in Definition 4.6, Lemma 4.8 implies that there exists an orgthogonal
matrix Q such that QΣQ> is diagonal. Since we know that every diagonal entry in QΣQ>

is nonnegative, we may define Y = (Y1, . . . , Yk), where Y1, . . . , Yk are independent normal
random vectors with mean zero and Var Yi equal to the ith diagonal entry of QΣQ>. Then
the random vector

X = µ + Q>Y (4.4)

has the characteristic function in equation (4.3), a fact whose proof is the subject of Exercise
4.1. Thus, Equation (4.3) of Definition 4.6 always gives the characteristic function of an
actual distribution. We denote this multivariate normal distribution by Nk(µ, Σ), or simply
N(µ, σ2) if k = 1.

To conclude this section, we point out that in case Σ is invertible, then Nk(µ, Σ) has a
density in the usual sense on Rk:

f(x) =
1√

2kπk|Σ|
exp

{
−1

2
(x− µ)>Σ−1(x− µ)

}
, (4.5)

where |Σ| denotes the determinant of Σ. However, this density will be of little value in the
large-sample topics to follow.

4.1.4 Asymptotic Normality

Now that Nk(µ, Σ) is defined, we may use it to state one of the most useful theorems in all of
statistical large-sample theory, the Central Limit Theorem for independent and identically
distributed (iid) sequences of random vectors. We defer the proof of this theorem to the next
section, where we establish a much more general result called the Lindeberg-Feller Central
Limit Theorem.
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Theorem 4.9 Central Limit Theorem for independent and identically distributed mul-
tivariate sequences: If X1,X2, . . . are independent and identically distributed
with mean µ ∈ Rk and covariance Σ, where Σ has finite entries, then

√
n(Xn − µ)

d→Nk(0, Σ).

Although we refer to several different theorems in this chapter as central limit theorems of
one sort or another, we also employ the standard statistical usage in which the phrase “The
Central Limit Theorem,” with no modifier, refers to Theorem 4.9 or its univariate analogue.

Before exhibiting some examples that apply Theorem 4.9, we discuss what is generally meant
by the phrase “asymptotic distribution”. Suppose we are given a sequence X1, X2, . . . of
random variables and asked to determine the asymptotic distribution of this sequence. This

might mean to find X such that Xn
d→X. However, depending on the context, this might

not be the case; for example, if Xn
d→ c for a constant c, then we mean something else by

“asymptotic distribution”.

In general, the “asymptotic distribution of Xn” means a nonconstant random variable X,

along with real-number sequences {an} and {bn}, such that an(Xn − bn)
d→X. In this case,

the distribution of X might be referred to as the asymptotic or limiting distribution of either
Xn or of an(Xn − bn), depending on the context.

Example 4.10 Suppose that Xn is the sum of n independent Bernoulli(p) random

variables, so that Xn ∼ binomial(n, p). Even though we know that Xn/n
P→ p

by the weak law of large numbers, this is not generally what we mean by the
asymptotic distribution of Xn/n. Instead, the asymptotic distribution of Xn/n
is expressed by

√
n

(
Xn

n
− p

)
d→N{0, p(1− p)},

which follows from the Central Limit Theorem because a Bernoulli(p) random
variable has mean p and variance p(1− p).

Example 4.11 Asymptotic distribution of sample variance: Suppose that X1, X2, . . .
are independent and identically distributed with E (Xi) = µ, Var (Xi) = σ2, and
Var {(Xi − µ)2} = τ 2 <∞. Define

S2
n =

1

n

n∑
i=1

(Xi −Xn)2. (4.6)

We wish to determine the asymptotic distribution of S2
n.
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Since the distribution of Xi − Xn does not change if we replace each Xi by
Xi − µ, we may assume without loss of generality that µ = 0. By the Central
Limit Theorem, we know that

√
n

(
1

n

n∑
i=1

X2
i − σ2

)
d→N(0, τ 2).

Furthermore, the Central Limit Theorem and the Weak Law imply
√

n(Xn)
d→N(0, σ2)

and Xn
P→ 0, respectively, so Slutsky’s theorem implies

√
n
(
X

2

n

)
P→ 0. Therefore,

since

√
n(S2

n − σ2) =
√

n

(
1

n

n∑
i=1

X2
i − σ2

)
+
√

n
(
X

2

n

)
,

Slutsky’s theorem implies that
√

n (S2
n − σ2)

d→N(0, τ 2), which is the desired re-
sult.

Note that the definition of S2
n in Equation 4.6 is not the usual unbiased sample

variance, which uses the denominator n− 1 instead of n. However, since

√
n

(
n

n− 1
S2

n − σ2

)
=
√

n(S2
n − σ2) +

√
n

n− 1
S2

n

and
√

n/(n − 1) → 0, we see that the simpler choice of n does not change the
asymptotic distribution at all.

4.1.5 The Cramér-Wold Theorem

Suppose that X1,X2, . . . is a sequence of random k-vectors. By Theorem 2.34, we see
immediately that

Xn
d→X implies a>Xn

d→ a>X for any a ∈ Rk. (4.7)

This is because multiplication by a constant vector aT is a continuous transformation from
Rk to R. It is not clear, however, whether the converse of statement (4.7) is true. Such a
converse would be useful because it would give a means for proving multivariate convergence
in distribution using only univariate methods. As the counterexample in Example 2.38 shows,
multivariate convergence in distribution does not follow from the mere fact that each of the
components converges in distribution. Yet the converse of statement (4.7) is much stronger
than the statement that each component converges in distribution; could it be true that
requiring all linear combinations to converge in distribution is strong enough to guarantee
multivariate convergence? The answer is yes:
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Theorem 4.12 Cramér-Wold Theorem: Xn
d→X if and only if a>Xn

d→ a>X for all
a ∈ Rk.

Using the machinery of characteristic functions, to be presented in Section 4.1, the proof of
the Cramér-Wold Theorem is immediate; see Exercise 4.3. This theorem in turn provides
a straightforward method for proving cerain multivariate theorems using univariate results.
For instance, once we establish the univariate Central Limit Theorem (Theorem 4.19), we
will show how to use the Cramér-Wold Theorem to prove the multivariate CLT, Theorem 4.9.

Exercises for Section 4.1

Exercise 4.1 (a) Prove that if Y ∼ N(0, σ2) with σ2 > 0, then φY (t) = exp
(
−1

2
t2σ2

)
.

Argue that this demonstrates that Definition 4.6 is valid in the case k = 1.

Hint: Verify and solve the differential equation φ′Y (t) = −tσ2φY (t). Use inte-
gration by parts.

(b) Using part (a), prove that if X is defined as in Equation (4.4), then φX(t) =
exp

(
it>µ− 1

2
t>Σt

)
.

Exercise 4.2 We will prove Theorem 4.2, which states that chacteristic functions
uniquely determine their distributions.

(a) First, prove the Parseval relation for random X and Y:

E
[
exp(−ia>Y)φX(Y)

]
= E φY(X− a).

Hint: Use conditioning to evaluate E exp{i(X− a)>Y}.

(b) Suppose that Y = (Y1, . . . , Yk), where Y1, . . . , Yk are independent and iden-
tically distributed normal random variables with mean 0 and variance σ2. That
is, Y has density

fY(y) = (
√

2πσ2)−k exp(−y>y/2σ2).

Show that X + Y has density

fX+Y(s) = E fY(s−X).

(c) Use the result of Exercise 4.1 along with part (b) to show that

fX+Y(s) = (
√

2πσ2)−k E φY

(
X

σ2
− s

σ2

)
.
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Argue that this fact proves φX(t) uniquely determines the distribution of X.

Hint: Use parts (a) and (b) to show that the distribution of X + Y depends on

X only through φX. Then note that X + Y
d→X as σ2 → 0.

Exercise 4.3 Use the Continuity Theorem to prove the Cramér-Wold Theorem, The-
orem 4.12.

Hint: a>Xn
d→ a>X implies that φa>Xn

(1)→ φa>X(1).

Exercise 4.4 Suppose X ∼ Nk(µ, Σ), where Σ is invertible. Prove that

(X− µ)>Σ−1(X− µ) ∼ χ2
k.

Hint: If Q diagonalizes Σ, say QΣQ> = Λ, let Λ1/2 be the diagonal, nonnegative
matrix satisfying Λ1/2Λ1/2 = Λ and consider Y>Y, where Y = (Λ1/2)−1Q(X−µ).

Exercise 4.5 Let X1, X2, . . . be independent Poisson random variables with mean
λ = 1. Define Yn =

√
n(Xn − 1).

(a) Find E (Y +
n ), where Y +

n = YnI{Yn > 0}.

(b) Find, with proof, the limit of E (Y +
n ) and prove Stirling’s formula

n! ∼
√

2π nn+1/2e−n.

Hint: Use the result of Exericse 3.12.

Exercise 4.6 Use the Continuity Theorem to prove Theorem 2.19, the univariate
Weak Law of Large Numbers.

Hint: Use a Taylor expansion (1.5) with d = 2 for both the real and imaginary
parts of the characteristic function of Xn.

Exercise 4.7 Use the Cramér-Wold Theorem along with the univariate Central Limit
Theorem (from Example 2.12) to prove Theorem 4.9.

4.2 The Lindeberg-Feller Central Limit Theorem

The Lindeberg-Feller Central Limit Theorem states in part that sums of independent random
variables, properly standardized, converge in distribution to standard normal as long as a
certain condition, called the Lindeberg Condition, is satisfied. Since these random variables
do not have to be identically distributed, this result generalizes the Central Limit Theorem
for independent and identically distributed sequences.
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4.2.1 The Lindeberg and Lyapunov Conditions

Suppose that X1, X2, . . . are independent random variables such that E Xn = µn and
Var Xn = σ2

n <∞. Define

Yn = Xn − µn,

Tn =
∑n

i=1 Yi,

s2
n = Var Tn =

∑n
i=1 σ2

i .

Instead of defining Yn to be the centered version of Xn, we could have simply taken µn to be
zero without loss of generality. However, when these results are used in practice, it is easy
to forget the centering step, so we prefer to make it explicit here.

Note that Tn/sn has mean zero and variance 1. We wish to give sufficient conditions that

ensure Tn/sn
d→N(0, 1). We give here two separate conditions, one called the Lindeberg con-

dition and the other called the Lyapunov condition. The Lindeberg Condition for sequences
states that

for every ε > 0,
1

s2
n

n∑
i=1

E
(
Y 2

i I {|Yi| ≥ εsn}
)
→ 0 as n→∞; (4.8)

the Lyapunov Condition for sequences states that

there exists δ > 0 such that
1

s2+δ
n

n∑
i=1

E
(
|Yi|2+δ

)
→ 0 as n→∞. (4.9)

We shall see later (in Theorem 4.16, the Lindeberg-Feller Theorem) that Condition (4.8)
implies Tn/sn → N(0, 1). For now, we show only that Condition (4.9)—the Lyapunov
Condition—is stronger than Condition (4.8). Thus, the Lyapunov Condition also implies
Tn/sn → N(0, 1):

Theorem 4.13 The Lyapunov Condition (4.9) implies the Lindeberg Condition (4.8).

Proof: Assume that the Lyapunov Condition is satisfied and fix ε > 0. Since |Yi| ≥ εsn

implies |Yi/εsn|δ ≥ 1, we obtain

1

s2
n

n∑
i=1

E
(
Y 2

i I {|Yi| ≥ εsn}
)
≤ 1

εδs2+δ
n

n∑
i=1

E
(
|Yi|2+δI {|Yi| ≥ εsn}

)
≤ 1

εδs2+δ
n

n∑
i=1

E
(
|Yi|2+δ

)
.

Since the right hand side tends to 0, the Lindeberg Condition is satisfied.
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Example 4.14 Suppose that we perform a series of independent Bernoulli trials with
possibly different success probabilities. Under what conditions will the proportion
of successes, properly standardized, tend to a normal distribution?

Let Xn ∼ Bernoulli(pn), so that Yn = Xn − pn and σ2
n = pn(1− pn). As we shall

see later (Theorem 4.16), either the Lindeberg Condition (4.8) or the Lyapunov

Condition (4.9) will imply that
∑n

i=1 Yi/sn
d→N(0, 1).

Let us check the Lyapunov Condition for, say, δ = 1. First, verify that

E |Yn|3 = pn(1− pn)3 + (1− pn)p3
n = σ2

n[(1− pn)2 − p2
n] ≤ σ2

n.

Using this upper bound on E |Yn|3, we obtain
∑n

i=1 E |Yi|3 ≤ s2
n. Therefore, the

Lyapunov condition is satisfied whenever s2
n/s

3
n → 0, which implies sn →∞. We

conclude that the proportion of successes tends to a normal distribution whenever

s2
n =

n∑
i=1

pn(1− pn)→∞,

which will be true as long as pn(1− pn) does not tend to 0 too fast.

4.2.2 Independent and Identically Distributed Variables

We now set the stage for proving a central limit theorem for independent and identically
distributed random variables by showing that the Lindeberg Condition is satisfied by such
a sequence as long as the common variance is finite.

Example 4.15 Suppose that X1, X2, . . . are independent and identically distributed
with E (Xi) = µ and Var (Xi) = σ2 <∞. The case σ2 = 0 is uninteresting, so we
assume σ2 > 0.

Let Yi = Xi − µ and s2
n = Var

∑n
i=1 Yi = nσ2. Fix ε > 0. The Lindeberg

Condition states that

1

nσ2

n∑
i=1

E
(
Y 2

i I{|Yi| ≥ εσ
√

n}
)
→ 0 as n→∞. (4.10)

Since the Yi are identically distributed, the left hand side of expression (4.10)
simplifies to

1

σ2
E
(
Y 2

1 I{|Y1| ≥ εσ
√

n}
)
. (4.11)
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To simplify notation, let Zn denote the random variable Y 2
1 I{|Y1| ≥ εσ

√
n}.

Thus, we wish to prove that E Zn → 0. Note that Zn is nonzero if and only if
|Y1| ≥ εσ

√
n. Since this event has probability tending to zero as n → ∞, we

conclude that Zn
P→ 0 by the definition of convergence in probability. We can also

see that |Zn| ≤ Y 2
1 , and we know that E Y 2

1 < ∞. Therefore, we may apply the
Dominated Convergence Theorem, Theorem 3.22, to conclude that E Zn → 0.
This demonstrates that the Lindeberg Condition is satisfied.

The preceding argument, involving the Dominated Convergence Theorem, is quite common
in proofs that the Lindeberg Condition is satisfied. Any beginning student is well-advised
to study this argument carefully.

Note that the assumptions of Example 4.15 are not strong enough to ensure that the Lya-
punov Condition (4.9) is satisfied. This is because there are some random variables that
have finite variances but no finite 2 + δ moment for any δ > 0. Construction of such an
example is the subject of Exercise 4.10. However, such examples are admittedly somewhat
pathological, and if one is willing to assume that X1, X2, . . . are independent and identically
distributed with E |X1|2+δ = γ <∞ for some δ > 0, then the Lyapunov Condition is much
easier to check than the Lindeberg Condition. Indeed, because sn = σ

√
n, the Lyapunov

Condition reduces to

nγ

(nσ2)1+δ/2
=

γ

nδ/2σ2+δ
→ 0,

which follows immediately.

4.2.3 Triangular Arrays

It is sometimes the case that X1, . . . , Xn are independent random variables—possibly even
identically distributed—but their distributions depend on n. Take the simple case of the
binomial(n, pn) distribution as an example, where the probability pn of success on any trial
changes as n increases. What can we say about the asymptotic distribution in such a
case? It seems that what we need is some way of dealing with a sequence of sequences, say,
Xn1, . . . , Xnn for n ≥ 1. This is exactly the idea of a triangular array of random variables.

Generalizing the concept of “sequence of independent random variables,” a triangular array
or random variables may be visualized as follows:

X11 ← independent
X21 X22 ← independent
X31 X32 X33 ← independent

...
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Thus, we assume that for each n, Xn1, . . . , Xnn are independent. Carrying over the notation
from before, we assume E Xni = µni and Var Xni = σ2

ni <∞. Let

Yni = Xni − µni,

Tn =
∑n

i=1 Yni,

s2
n = Var Tn =

∑n
i=1 σ2

ni.

As before, Tn/sn has mean 0 and variance 1; our goal is to give conditions under which

Tn

sn

d→N(0, 1). (4.12)

Such conditions are given in the Lindeberg-Feller Central Limit Theorem. The key to this
theorem is the Lindeberg condition for triangular arrays:

For every ε > 0,
1

s2
n

n∑
i=1

E
(
Y 2

niI {|Yni| ≥ εsn}
)
→ 0 as n→∞. (4.13)

Before stating the Lindeberg-Feller theorem, we need a technical condition that says essen-
tially that the contribution of each Xni to s2

n should be negligible:

1

s2
n

max
i≤n

σ2
ni → 0 as n→∞. (4.14)

Now that Conditions (4.12), (4.13), and (4.14) have been written, the main result may be
stated in a single line:

Theorem 4.16 Lindeberg-Feller Central Limit Theorem: Condition (4.13) holds if
and only if Conditions (4.12) and (4.14) hold.

A proof of the Lindeberg-Feller Theorem is the subject of Exercises 4.8 and 4.9. In most
practical applications of this theorem, the Lindeberg Condition (4.13) is used to establish
asymptotic normality (4.12); the remainder of the theorem’s content is less useful.

Example 4.17 As an extension of Example 4.14, suppose Xn ∼ binomial(n, pn). The
calculations here are not substantially different from those in Example 4.14, so
we use the Lindeberg Condition here for the purpose of illustration. We claim
that

Xn − npn√
npn(1− pn)

d→N(0, 1) (4.15)

whenever npn(1 − pn) → ∞ as n → ∞. In order to use Theorem 4.16 to prove
this result, let Yn1, . . . , Ynn be independent and identically distributed with

P (Yni = 1− pn) = 1− P (Yni = −pn) = pn.
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Then with Xn = npn +
∑n

i=1 Yni, we obtain Xn ∼ binomial(n, pn) as specified.
Furthermore, E Yni = 0 and Var Yni = pn(1 − pn), so the Lindeberg condition
says that for any ε > 0,

1

npn(1− pn)

n∑
i=1

E
(
Y 2

niI
{
|Yni| ≥ ε

√
npn(1− pn)

})
→ 0. (4.16)

Since |Yni| ≤ 1, the left hand side of expression (4.16) will be identically zero
whenever ε

√
npn(1− pn) > 1. Thus, a sufficient condition for (4.15) to hold is

that npn(1 − pn) → ∞. One may show that this is also a necessary condition
(this is Exercise 4.11).

Note that any independent sequence X1, X2, . . . may be considered a triangular array by
simply taking Xn1 = X1 for all n ≥ 1, Xn2 = X2 for all n ≥ 2, and so on. Therefore,
Theorem 4.16 applies equally to the Lindeberg Condition (4.8) for sequences. Furthermore,
the proof of Theorem 4.13 is unchanged if the sequence Yi is replaced by the array Yni.
Therefore, we obtain an alternative means for checking asymptotic normality:

Corollary 4.18 Asymptotic normality (4.12) follows if the triangular array above
satisfies the Lyapunov Condition for triangular arrays:

there exists δ > 0 such that
1

s2+δ
n

n∑
i=1

E
(
|Yni|2+δ

)
→ 0 as n→∞. (4.17)

Combining Theorem 4.16 with Example 4.15, in which the Lindeberg condition is verified for
a sequence of independent and identically distributed variables with finite positive variance,
gives the result commonly referred to simply as “The Central Limit Theorem”:

Theorem 4.19 Univariate Central Limit Theorem for iid sequences: Suppose that
X1, X2, . . . are independent and identically distributed with E (Xi) = µ and
Var (Xi) = σ2 <∞. Then

√
n
(
Xn − µ

) d→N(0, σ2). (4.18)

The case σ2 = 0 is not covered by Example 4.15, but in this case limit (4.18) holds auto-
matically.

We conclude this section by generalizing Theorem 4.19 to the multivariate case, Theorem
4.9. The proof is straightforward using theorem 4.19 along with the Cramér-Wold theorem,
theorem 4.12. Recall that the Cramér-Wold theorem allows us to establish multivariate
convergence in distribution by proving univariate convergence in distribution for arbitrary
linear combinations of the vector components.
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Proof of Theorem 4.9: Let X ∼ Nk(0, Σ) and take any vector a ∈ Rk. We wish to show
that

a>
[√

n
(
Xn − µ

)] d→ a>X.

But this follows immediately from the univariate Central Limit Theorem, since a>(X1 −
µ), a>(X2 − µ), . . . are independent and identically distributed with mean 0 and variance
a>Σa.

We will see many, many applications of the univariate and multivariate Central Limit The-
orems in the chapters that follow.

Exercises for Section 4.2

Exercise 4.8 Prove that (4.13) implies both (4.12) and (4.14) (the “forward half” of
the Lindeberg-Feller Theorem). Use the following steps:

(a) Prove that for any complex numbers a1, . . . , an and b1, . . . , bn with |ai| ≤ 1
and |bi| ≤ 1,

|a1 · · · an − b1 · · · bn| ≤
n∑

i=1

|ai − bi| . (4.19)

Hint: First prove the identity when n = 2, which is the key step. Then use
mathematical induction.

(b) Prove that∣∣∣∣φYni

(
t

sn

)
−
(

1− t2σ2
ni

2s2
n

)∣∣∣∣ ≤ ε|t|3σ2
ni

s2
n

+
t2

s2
n

E
(
Y 2

niI{|Yni| ≥ εsn}
)
. (4.20)

Hint: Use the results of Exercise 1.43, parts (c) and (d), to argue that for any
Y ,∣∣∣∣exp

{
itY

sn

}
−
(

1 +
itY

sn

− t2Y 2

2s2
n

)∣∣∣∣ ≤ ∣∣∣∣tYsn

∣∣∣∣3 I

{∣∣∣∣ Ysn

∣∣∣∣ < ε

}
+

(
tY

sn

)2

I{|Y | ≥ εsn}.

(c) Prove that (4.13) implies (4.14).

Hint: For any i, show that

σ2
ni

s2
n

< ε2 +
E (Y 2

niI{|Yni| ≥ εsn})
s2

n

.
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(d) Use parts (a) and (b) to prove that, for n large enough so that t2 maxi σ
2
ni/s

2
n ≤

1,∣∣∣∣∣
n∏

i=1

φYni

(
t

sn

)
−

n∏
i=1

(
1− t2σ2

ni

2s2
n

)∣∣∣∣∣ ≤ ε|t|3 +
t2

s2
n

n∑
i=1

E
(
Y 2

niI {|Yni| ≥ εsn}
)
.

(e) Use part (a) to prove that∣∣∣∣∣
n∏

i=1

(
1− t2σ2

ni

2s2
n

)
−

n∏
i=1

exp

(
−t2σ2

ni

2s2
n

)∣∣∣∣∣ ≤ t4

4s4
n

n∑
i=1

σ4
ni ≤

t4

4s2
n

max
1≤i≤n

σ2
ni.

Hint: Prove that for x ≤ 0, |1 + x− exp(x)| ≤ x2.

(f) Now put it all together. Show that∣∣∣∣∣
n∏

i=1

φYni

(
t

sn

)
−

n∏
i=1

exp

(
−t2σ2

ni

2s2
n

)∣∣∣∣∣→ 0,

proving (4.12).

Exercise 4.9 In this problem, we prove the converse of Exercise 4.8, which is the
part of the Lindeberg-Feller Theorem due to Feller: Under the assumptions of
the Exercise 4.8, the variance condition (4.14) and the asymptotic normality
(4.12) together imply the Lindeberg condition (4.13).

(a) Define

αni = φYni
(t/sn)− 1.

Prove that

max
1≤i≤n

|αni| ≤ 2 max
1≤i≤n

P (|Yni| ≥ εsn) + 2ε|t|

and thus

max
1≤i≤n

|αni| → 0 as n→∞.

Hint: Use the result of Exercise 1.43(a) to show that | exp{it}−1| ≤ 2 min{1, |t|}
for t ∈ R. Then use Chebyshev’s inequality along with condition (4.14).
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(b) Use part (a) to prove that

n∑
i=1

|αni|2 → 0

as n→∞.

Hint: Use the result of Exercise 1.43(b) to show that |αni| ≤ t2σ2
ni/s

2
n. Then

write |αni|2 ≤ |αni|maxi |αni|.

(c) Prove that for n large enough so that maxi |αni| ≤ 1/2,∣∣∣∣∣
n∏

i=1

exp(αni)−
n∏

i=1

(1 + αni)

∣∣∣∣∣ ≤
n∑

i=1

|αni|2.

Hint: Use the fact that |exp(z − 1)| = exp(Re z − 1) ≤ 1 for |z| ≤ 1 to argue
that Inequality (4.19) applies. Also use the fact that | exp(z) − 1 − z| ≤ |z|2 for
|z| ≤ 1/2.

(d) From part (c) and condition (4.12), conclude that

n∑
i=1

Re (αni)→ −
1

2
t2.

(e) Show that

0 ≤
n∑

i=1

E

(
cos

tYni

sn

− 1 +
t2Y 2

ni

2s2
n

)
→ 0.

(f) For arbitrary ε > 0, choose t large enough so that t2/2 > 2/ε2. Show that(
t2

2
− 2

ε2

)
1

s2
n

n∑
i=1

E
(
Y 2

niI{|Yni| ≥ εsn}
)
≤

n∑
i=1

E

(
cos

tYni

sn

− 1 +
t2Y 2

ni

2s2
n

)
,

which completes the proof.

Hint: Bound the expression in part (e) below by using the fact that −1 is a
lower bound for cos x. Also note that |Yni| ≥ εsn implies −2 ≥ −2Y 2

ni/(ε
2s2

n).
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Exercise 4.10 Give an example of an independent and identically distributed se-
quence to which the Central Limit Theorem 4.19 applies but for which the Lya-
punov condition is not satisfied.

Exercise 4.11 In Example 4.17, we show that npn(1 − pn) → ∞ is a sufficient con-
dition for (4.15) to hold. Prove that it is also a necessary condition. You may
assume that pn(1− pn) is always nonzero.

Hint: Use the Lindeberg-Feller Theorem.

Exercise 4.12 (a) Suppose that X1, X2, . . . are independent and identically dis-
tributed with E Xi = µ and 0 < Var Xi = σ2 <∞. Let an1, . . . , ann be constants
satisfying

maxi≤n a2
ni∑n

j=1 a2
nj

→ 0 as n→∞.

Let Tn =
∑n

i=1 aniXi, and prove that (Tn − E Tn)/
√

Var Tn
d→N(0, 1).

(b) Reconsider Example 2.22, the simple linear regression case in which

β̂0n =
n∑

i=1

v
(n)
i Yi and β̂1n =

n∑
i=1

w
(n)
i Yi,

where

w
(n)
i =

zi − zn∑n
j=1(zj − zn)2

and v
(n)
i =

1

n
− znw

(n)
i

for constants z1, z2, . . .. Using part (a), state and prove sufficient conditions
on the constants zi that ensure the asymptotic normality of

√
n(β̂0n − β0) and√

n(β̂1n − β1). You may assume the results of Example 2.22, where it was shown
that E β̂0n = β0 and E β̂1n = β1.

Exercise 4.13 Give an example (with proof) of a sequence of independent random
variables Z1, Z2, . . . with E (Zi) = 0, Var (Zi) = 1 such that

√
n(Zn) does not

converge in distribution to N(0, 1).

Exercise 4.14 Let (a1, . . . , an) be a random permutation of the integers 1, . . . , n. If
aj < ai for some i < j, then the pair (i, j) is said to form an inversion. Let Xn

be the total number of inversions:

Xn =
n∑

j=2

j−1∑
i=1

I{aj < ai}.
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For example, if n = 3 and we consider the permutation (3, 1, 2), there are 2
inversions since 1 = a2 < a1 = 3 and 2 = a3 < a1 = 3. This problem asks you to
find the asymptotic distribution of Xn.

(a) Define Y1 = 0 and for j > 1, let

Yj =

j−1∑
i=1

I{aj < ai}

be the number of ai greater than aj to the left of aj. Then the Yj are independent
(you don’t have to show this; you may wish to think about why, though). Find
E (Yj) and Var Yj.

(b) Use Xn = Y1 + Y2 + · · ·+ Yn to prove that

3

2

√
n

(
4Xn

n2
− 1

)
d→N(0, 1).

(c) For n = 10, evaluate the distribution of inversions as follows. First, simulate
1000 permutations on {1, 2, . . . , 10} and for each permutation, count the number
of inversions. Plot a histogram of these 1000 numbers. Use the results of the
simulation to estimate P (X10 ≤ 24). Second, estimate P (X10 ≤ 24) using a
normal approximation. Can you find the exact integer c such that 10!P (X10 ≤
24) = c?

Exercise 4.15 Suppose that X1, X2, X3 is a sample of size 3 from a beta (2, 1) dis-
tribution.

(a) Find P (X1 + X2 + X3 ≤ 1) exactly.

(b) Find P (X1 + X2 + X3 ≤ 1) using a normal approximation derived from the
central limit theorem.

(c) Let Z = I{X1 + X2 + X3 ≤ 1}. Approximate E Z = P (X1 + X2 + X3 ≤ 1)
by Z =

∑1000
i=1 Zi/1000, where Zi = I{Xi1 + Xi2 + Xi3 ≤ 1} and the Xij are

independent beta (2, 1) random variables. In addition to Z, report Var Z for
your sample. (To think about: What is the theoretical value of Var Z?)

(d) Approximate P (X1 + X2 + X3 ≤ 3
2
) using the normal approximation and

the simulation approach. (Don’t compute the exact value, which is more difficult
to than in part (a); do you see why?)

Exercise 4.16 Lindeberg and Lyapunov impose conditions on moments so that asymp-
totic normality occurs. However, it is possible to have asymptotic normality even
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if there are no moments at all. Let Xn assume the values +1 and −1 with prob-
ability (1− 2−n)/2 each and the value 2k with probability 2−k for k > n.

(a) Show that E (Xj
n) =∞ for all positive integers j and n.

(b) Show that
√

n
(
Xn

) d→N(0, 1).

Exercise 4.17 Assume that elements (“coupons”) are drawn from a population of
size n, randomly and with replacement, until the number of distinct elements
that have been sampled is rn, where 1 ≤ rn ≤ n. Let Sn be the drawing on which
this first happens. Suppose that rn/n→ ρ, where 0 < ρ < 1.

(a) Suppose k − 1 distinct coupons have thus far entered the sample. Let Xnk

be the waiting time until the next distinct one appears, so that

Sn =
rn∑

k=1

Xnk.

Find the expectation and variance of Xnk.

(b) Let mn = E (Sn) and τ 2
n = Var (Sn). Show that

Sn −mn

τn

d→N(0, 1).

Tip: One approach is to apply Lyapunov’s condition with δ = 2. This involves
demonstrating an asymptotic expression for τ 2

n and a bound on E [Xnk − E(Xnk)]
4.

There are several ways to go about this.

Exercise 4.18 Suppose that X1, X2, . . . are independent binomial(2, p) random vari-
ables. Define Yi = I{Xi = 0}.

(a) Find a such that the joint asymptotic distribution of

√
n

[(
Xn

Y n

)
− a

]
is nontrivial, and find this joint asymptotic distribution.

(b) Using the Cramér-Wold Theorem, Theorem 4.12, find the asymptotic dis-
tribution of

√
n(Xn + Y n − 1− p2).
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4.3 Stationary m-Dependent Sequences

Here we consider sequences that are identically distributed but not independent. In fact, we
make a stronger assumption than identically distributed; namely, we assume that X1, X2, . . .
is a stationary sequence. (Stationary is defined in Definition 2.24.) Denote E Xi by µ and
let σ2 = Var Xi.

We seek sufficient conditions for the asymptotic normality of
√

n(Xn − µ). The variance of
Xn for a stationary sequence is given by Equation (2.20). Letting γk = Cov (X1, X1+k), we
conclude that

Var
{√

n(Xn − µ)
}

= σ2 +
2

n

n−1∑
k=1

(n− k)γk. (4.21)

Suppose that

2

n

n−1∑
k=1

(n− k)γk → γ (4.22)

as n→∞. Then based on Equation (4.21), it seems reasonable to ask whether

√
n(Xn − µ)

d→N(0, σ2 + γ).

The answer, in many cases, is yes. This section explores one such case.

Recall from Definition 2.26 that X1, X2, . . . is m-dependent for some m ≥ 0 if the vector
(X1, . . . , Xi) is independent of (Xi+j, Xi+j+1, . . .) whenever j > m. Therefore, for an m-
dependent sequence we have γk = 0 for all k > m, so limit (4.22) becomes

2

n

n−1∑
k=1

(n− k)γk → 2
m∑

k=1

γk.

For a stationary m-dependent sequence, the following theorem asserts the asymptotic nor-
mality of Xn as long as the Xi are bounded:

Theorem 4.20 If for some m ≥ 0, X1, X2, . . . is a stationary m-dependent sequence
of bounded random variables with E Xi = µ and Var Xi = σ2, then

√
n(Xn − µ)

d→N

(
0, σ2 + 2

m∑
k=1

Cov [X1, X1+k]

)
.
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The assumption in Theorem 4.20 that the Xi are bounded is not necessary, as long as σ2 <∞.
However, the proof of the theorem is quite tricky without the boundedness assumption, and
the theorem is strong enough for our purposes as it stands. See, for instance, Ferguson (1996)
for a complete proof. The theorem may be proved using the following strategy: For some
integer kn, define random variables V1, V2, . . . and W1, W2, . . . as follows:

V1 = X1 + · · ·+ Xkn , W1 = Xkn+1 + · · ·+ Xkn+m,
V2 = Xkn+m+1 + · · ·+ X2kn+m, W2 = X2kn+m+1 + · · ·+ X2kn+2m,

...

(4.23)

In other words, each Vi is the sum of kn of the Xi and each Wi is the sum of m of the Xi.
Because the sequence of Xi is m-dependent, we conclude that the Vi are independent. For
this reason, we may apply the Lindeberg-Feller theorem to the Vi. If kn is defined carefully,
then the contribution of the Wi may be shown to be negligible. This strategy is implemented
in Exercise 4.19, where a proof of Theorem 4.20 is outlined.

Example 4.21 Runs of successes: Suppose X1, X2, . . . are independent Bernoulli(p)
variables. Let Tn denote the number of runs of successes in X1, . . . , Xn, where
a run of successes is defined as a sequence of consecutive Xi, all of which equal
1, that is both preceded and followed by zeros (unless the run begins with X1 or
ends with Xn). What is the asymptotic distribution of Tn?

We note that

Tn =
n∑

i=1

I{run starts at ith position}

= X1 +
n∑

i=2

Xi(1−Xi−1),

since a run starts at the ith position for i > 1 if and only if Xi = 1 and Xi−1 = 0.

Letting Yi = Xi+1(1 − Xi), we see immediately that Y1, Y2, . . . is a stationary
1-dependent sequence with E Yi = p(1− p), so that by Theorem 4.20,

√
n{Y n −

p(1− p)} d→N(0, τ 2), where

τ 2 = Var Y1 + 2 Cov (Y1, Y2)

= E Y 2
1 − (E Y1)

2 + 2 E Y1Y2 − 2(E Y1)
2

= E Y1 − 3(E Y1)
2 = p(1− p)− 3p2(1− p)2.

Since

Tn − np(1− p)√
n

=
√

n{Y n − p(1− p)}+
X1 − Yn√

n
,
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we conclude that

Tn − np(1− p)√
n

d→N(0, τ 2).

Exercises for Section 4.3

Exercise 4.19 We wish to prove theorem 4.20. Suppose X1, X2, . . . is a station-
ary m-dependent sequence of bounded random variables such that Var Xi =
σ2. Without loss of generality, assume E Xi = 0. We wish to prove that
√

n(Xn)
d→N(0, τ 2), where

τ 2 = σ2 + 2
m∑

k=1

Cov (X1, X1+k).

For all n, define kn = bn1/4c and `n = bn/(kn + m)c and tn = `n(kn + m). Define
V1, . . . , V`n and W1, . . . ,W`n as in Equation (4.23). Then

√
n(Xn) =

1√
n

`n∑
i=1

Vi +
1√
n

`n∑
i=1

Wi +
1√
n

n∑
i=tn+1

Xi.

(a) Prove that

1√
n

n∑
i=tn+1

Xi
P→ 0. (4.24)

Hint: Bound the left hand side of expression (4.24) using Markov’s inequality
(1.35) with r = 1. What is the greatest possible number of summands?

(b) Prove that

1√
n

`n∑
i=1

Wi
P→ 0.

Hint: For kn > m, the Wi are independent and identically distributed with dis-
tributions that do not depend on n. Use the central limit theorem on (1/

√
`n)
∑`n

i=1 Wi.
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(c) Prove that

1√
n

`n∑
i=1

Vi
d→ N(0, τ 2),

then use Slutsky’s theorem to prove theorem 4.20.

Hint: Use the Lindeberg-Feller theorem.

Exercise 4.20 Suppose X0, X1, . . . is an independent sequence of Bernoulli trials with
success probability p. Suppose Xi is the indicator of your team’s success on rally
i in a volleyball game. Your team scores a point each time it has a success that
follows another success. Let Sn =

∑n
i=1 Xi−1Xi denote the number of points your

team scores by time n.

(a) Find the asymptotic distribution of Sn.

(b) Simulate a sequence X0, X1, . . . , X1000 as above and calculate S1000 for p = .4.
Repeat this process 100 times, then graph the empirical distribution of S1000 ob-
tained from simulation on the same axes as the theoretical asymptotic distribution
from (a). Comment on your results.

Exercise 4.21 Let X0, X1, . . . be independent and identically distributed random
variables from a continuous distribution F (x). Define Yi = I{Xi < Xi−1 and Xi < Xi+1}.
Thus, Yi is the indicator that Xi is a relative minimum. Let Sn =

∑n
i=1 Yi.

(a) Find the asymptotic distribution of Sn.

(b) Let n = 5000. For a sample X0, . . . , X5001 of size 5002 from the uniform (0, 1)
random number generator in R, compute an approximate two-sided p-value based
on the observed value of Sn and the answer to part (a). The null hypothesis is
that the sequence of “random” numbers generated is independent and identically
distributed. (Naturally, the “random” numbers are not random at all, but are
generated by a deterministic formula that is supposed to mimic randomness.)
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