

Figure 2.5 Plots of the Dirichlet distribution over three variables, where the two horizontal axes are coordinates in the plane of the simplex and the vertical axis corresponds to the value of the density. Here $\left\{\alpha_{k}\right\}=0.1$ on the left plot, $\left\{\alpha_{k}\right\}=1$ in the centre plot, and $\left\{\alpha_{k}\right\}=10$ in the right plot.
modelled using the binomial distribution (2.9) or as 1-of-2 variables and modelled using the multinomial distribution (2.34) with $K=2$.

2.3. The Gaussian Distribution

The Gaussian, also known as the normal distribution, is a widely used model for the distribution of continuous variables. In the case of a single variable x, the Gaussian distribution can be written in the form

$$
\begin{equation*}
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} \exp \left\{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right\} \tag{2.42}
\end{equation*}
$$

where μ is the mean and σ^{2} is the variance. For a D-dimensional vector \mathbf{x}, the multivariate Gaussian distribution takes the form

$$
\begin{equation*}
\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{D / 2}} \frac{1}{|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\} \tag{2.43}
\end{equation*}
$$

where $\boldsymbol{\mu}$ is a D-dimensional mean vector, $\boldsymbol{\Sigma}$ is a $D \times D$ covariance matrix, and $|\boldsymbol{\Sigma}|$ denotes the determinant of $\boldsymbol{\Sigma}$.

The Gaussian distribution arises in many different contexts and can be motivated

Section 1.6
Exercise 2.14 from a variety of different perspectives. For example, we have already seen that for a single real variable, the distribution that maximizes the entropy is the Gaussian. This property applies also to the multivariate Gaussian.

Another situation in which the Gaussian distribution arises is when we consider the sum of multiple random variables. The central limit theorem (due to Laplace) tells us that, subject to certain mild conditions, the sum of a set of random variables, which is of course itself a random variable, has a distribution that becomes increasingly Gaussian as the number of terms in the sum increases (Walker, 1969). We can

Figure 2.6 Histogram plots of the mean of N uniformly distributed numbers for various values of N. We observe that as N increases, the distribution tends towards a Gaussian.

Appendix C
 Carl Friedrich Gauss 1777-1855

It is said that when Gauss went to elementary school at age 7, his teacher Büttner, trying to keep the class occupied, asked the pupils to sum the integers from 1 to 100. To the teacher's amazement, Gauss arrived at the answer in a matter of moments by noting that the sum can be represented as 50 pairs $(1+100$, $2+99$, etc.) each of which added to 101, giving the answer 5,050 . It is now believed that the problem which was actually set was of the same form but somewhat harder in that the sequence had a larger starting value and a larger increment. Gauss was a German math-
ematician and scientist with a reputation for being a hard-working perfectionist. One of his many contributions was to show that least squares can be derived under the assumption of normally distributed errors. He also created an early formulation of non-Euclidean geometry (a self-consistent geometrical theory that violates the axioms of Euclid) but was reluctant to discuss it openly for fear that his reputation might suffer if it were seen that he believed in such a geometry. At one point, Gauss was asked to conduct a geodetic survey of the state of Hanover, which led to his formulation of the normal distribution, now also known as the Gaussian. After his death, a study of his diaries revealed that he had discovered several important mathematical results years or even decades before they were published by others.
functional dependence of the Gaussian on \mathbf{x} is through the quadratic form

$$
\begin{equation*}
\Delta^{2}=(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}) \tag{2.44}
\end{equation*}
$$

which appears in the exponent. The quantity Δ is called the Mahalanobis distance from $\boldsymbol{\mu}$ to x and reduces to the Euclidean distance when $\boldsymbol{\Sigma}$ is the identity matrix. The Gaussian distribution will be constant on surfaces in \mathbf{x}-space for which this quadratic form is constant.

First of all, we note that the matrix Σ can be taken to be symmetric, without loss of generality, because any antisymmetric component would disappear from the exponent. Now consider the eigenvector equation for the covariance matrix

$$
\begin{equation*}
\boldsymbol{\Sigma} \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i} \tag{2.45}
\end{equation*}
$$

where $i=1, \ldots, D$. Because Σ is a real, symmetric matrix its eigenvalues will be real, and its eigenvectors can be chosen to form an orthonormal set, so that

$$
\begin{equation*}
\mathbf{u}_{i}^{\mathrm{T}} \mathbf{u}_{j}=I_{i j} \tag{2.46}
\end{equation*}
$$

where $I_{i j}$ is the i, j element of the identity matrix and satisfies

$$
I_{i j}= \begin{cases}1, & \text { if } i=j \tag{2.47}\\ 0, & \text { otherwise }\end{cases}
$$

The covariance matrix $\boldsymbol{\Sigma}$ can be expressed as an expansion in terms of its eigenvectors in the form

$$
\begin{equation*}
\boldsymbol{\Sigma}=\sum_{i=1}^{D} \lambda_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{\mathrm{T}} \tag{2.48}
\end{equation*}
$$

and similarly the inverse covariance matrix $\boldsymbol{\Sigma}^{-1}$ can be expressed as

$$
\begin{equation*}
\boldsymbol{\Sigma}^{-1}=\sum_{i=1}^{D} \frac{1}{\lambda_{i}} \mathbf{u}_{i} \mathbf{u}_{i}^{\mathrm{T}} \tag{2.49}
\end{equation*}
$$

Substituting (2.49) into (2.44), the quadratic form becomes

$$
\begin{equation*}
\Delta^{2}=\sum_{i=1}^{D} \frac{y_{i}^{2}}{\lambda_{i}} \tag{2.50}
\end{equation*}
$$

where we have defined

$$
\begin{equation*}
y_{i}=\mathbf{u}_{i}^{\mathrm{T}}(\mathbf{x}-\boldsymbol{\mu}) \tag{2.51}
\end{equation*}
$$

We can interpret $\left\{y_{i}\right\}$ as a new coordinate system defined by the orthonormal vectors \mathbf{u}_{i} that are shifted and rotated with respect to the original x_{i} coordinates. Forming the vector $\mathbf{y}=\left(y_{1}, \ldots, y_{D}\right)^{\mathrm{T}}$, we have

$$
\begin{equation*}
\mathbf{y}=\mathbf{U}(\mathbf{x}-\boldsymbol{\mu}) \tag{2.52}
\end{equation*}
$$

Figure 2.7 The red curve shows the elliptical surface of constant probability density for a Gaussian in a two-dimensional space $\mathrm{x}=$ $\left(x_{1}, x_{2}\right)$ on which the density is $\exp (-1 / 2)$ of its value at $\mathrm{x}=\mu$. The major axes of the ellipse are defined by the eigenvectors \mathbf{u}_{i} of the covariance matrix, with corresponding eigenvalues λ_{i}.

where \mathbf{U} is a matrix whose rows are given by $\mathbf{u}_{i}^{\mathrm{T}}$. From (2.46) it follows that \mathbf{U} is an orthogonal matrix, i.e., it satisfies $\mathbf{U U}^{\mathrm{T}}=\mathbf{I}$, and hence also $\mathbf{U}^{\mathrm{T}} \mathbf{U}=\mathbf{I}$, where \mathbf{I} is the identity matrix.

The quadratic form, and hence the Gaussian density, will be constant on surfaces for which (2.51) is constant. If all of the eigenvalues λ_{i} are positive, then these surfaces represent ellipsoids, with their centres at $\boldsymbol{\mu}$ and their axes oriented along \mathbf{u}_{i}, and with scaling factors in the directions of the axes given by $\lambda_{i}^{1 / 2}$, as illustrated in Figure 2.7.

For the Gaussian distribution to be well defined, it is necessary for all of the eigenvalues λ_{i} of the covariance matrix to be strictly positive, otherwise the distribution cannot be properly normalized. A matrix whose eigenvalues are strictly positive is said to be positive definite. In Chapter 12, we will encounter Gaussian distributions for which one or more of the eigenvalues are zero, in which case the distribution is singular and is confined to a subspace of lower dimensionality. If all of the eigenvalues are nonnegative, then the covariance matrix is said to be positive semidefinite.

Now consider the form of the Gaussian distribution in the new coordinate system defined by the y_{i}. In going from the \mathbf{x} to the \mathbf{y} coordinate system, we have a Jacobian matrix \mathbf{J} with elements given by

$$
\begin{equation*}
J_{i j}=\frac{\partial x_{i}}{\partial y_{j}}=U_{j i} \tag{2.53}
\end{equation*}
$$

where $U_{j i}$ are the elements of the matrix \mathbf{U}^{T}. Using the orthonormality property of the matrix \mathbf{U}, we see that the square of the determinant of the Jacobian matrix is

$$
\begin{equation*}
|\mathbf{J}|^{2}=\left|\mathbf{U}^{\mathrm{T}}\right|^{2}=\left|\mathbf{U}^{\mathrm{T}}\right||\mathbf{U}|=\left|\mathbf{U}^{\mathrm{T}} \mathbf{U}\right|=|\mathbf{I}|=1 \tag{2.54}
\end{equation*}
$$

and hence $|\mathbf{J}|=1$. Also, the determinant $|\boldsymbol{\Sigma}|$ of the covariance matrix can be written
as the product of its eigenvalues, and hence

$$
\begin{equation*}
|\boldsymbol{\Sigma}|^{1 / 2}=\prod_{j=1}^{D} \lambda_{j}^{1 / 2} \tag{2.55}
\end{equation*}
$$

Thus in the y_{j} coordinate system, the Gaussian distribution takes the form

$$
\begin{equation*}
p(\mathbf{y})=p(\mathbf{x})|\mathbf{J}|=\prod_{j=1}^{D} \frac{1}{\left(2 \pi \lambda_{j}\right)^{1 / 2}} \exp \left\{-\frac{y_{j}^{2}}{2 \lambda_{j}}\right\} \tag{2.56}
\end{equation*}
$$

which is the product of D independent univariate Gaussian distributions. The eigenvectors therefore define a new set of shifted and rotated coordinates with respect to which the joint probability distribution factorizes into a product of independent distributions. The integral of the distribution in the \mathbf{y} coordinate system is then

$$
\begin{equation*}
\int p(\mathbf{y}) \mathrm{d} \mathbf{y}=\prod_{j=1}^{D} \int_{-\infty}^{\infty} \frac{1}{\left(2 \pi \lambda_{j}\right)^{1 / 2}} \exp \left\{-\frac{y_{j}^{2}}{2 \lambda_{j}}\right\} \mathrm{d} y_{j}=1 \tag{2.57}
\end{equation*}
$$

where we have used the result (1.48) for the normalization of the univariate Gaussian. This confirms that the multivariate Gaussian (2.43) is indeed normalized.

We now look at the moments of the Gaussian distribution and thereby provide an interpretation of the parameters $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$. The expectation of x under the Gaussian distribution is given by

$$
\begin{align*}
\mathbb{E}[\mathbf{x}] & =\frac{1}{(2 \pi)^{D / 2}} \frac{1}{|\boldsymbol{\Sigma}|^{1 / 2}} \int \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\} \mathbf{x} \mathrm{d} \mathbf{x} \\
& =\frac{1}{(2 \pi)^{D / 2}} \frac{1}{|\boldsymbol{\Sigma}|^{1 / 2}} \int \exp \left\{-\frac{1}{2} \mathbf{z}^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} \mathbf{z}\right\}(\mathbf{z}+\boldsymbol{\mu}) \mathrm{d} \mathbf{z} \tag{2.58}
\end{align*}
$$

where we have changed variables using $\mathbf{z}=\mathbf{x}-\boldsymbol{\mu}$. We now note that the exponent is an even function of the components of \mathbf{z} and, because the integrals over these are taken over the range $(-\infty, \infty)$, the term in \mathbf{z} in the factor $(\mathbf{z}+\boldsymbol{\mu})$ will vanish by symmetry. Thus

$$
\begin{equation*}
\mathbb{E}[\mathbf{x}]=\boldsymbol{\mu} \tag{2.59}
\end{equation*}
$$

and so we refer to $\boldsymbol{\mu}$ as the mean of the Gaussian distribution.
We now consider second order moments of the Gaussian. In the univariate case, we considered the second order moment given by $\mathbb{E}\left[x^{2}\right]$. For the multivariate Gaussian, there are D^{2} second order moments given by $\mathbb{E}\left[x_{i} x_{j}\right]$, which we can group together to form the matrix $\mathbb{E}\left[\mathbf{x x}^{\mathrm{T}}\right]$. This matrix can be written as

$$
\begin{aligned}
\mathbb{E} & {\left[\mathbf{x x}^{\mathrm{T}}\right]=\frac{1}{(2 \pi)^{D / 2}} \frac{1}{|\boldsymbol{\Sigma}|^{1 / 2}} \int \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\} \mathbf{x} \mathbf{x}^{\mathrm{T}} \mathrm{~d} \mathbf{x} } \\
& =\frac{1}{(2 \pi)^{D / 2}} \frac{1}{|\boldsymbol{\Sigma}|^{1 / 2}} \int \exp \left\{-\frac{1}{2} \mathbf{z}^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} \mathbf{z}\right\}(\mathbf{z}+\boldsymbol{\mu})(\mathbf{z}+\boldsymbol{\mu})^{\mathrm{T}} \mathrm{~d} \mathbf{z}
\end{aligned}
$$

where again we have changed variables using $\mathbf{z}=\mathbf{x}-\boldsymbol{\mu}$. Note that the cross-terms involving $\boldsymbol{\mu} \mathbf{z}^{\mathrm{T}}$ and $\boldsymbol{\mu}^{\mathrm{T}} \mathbf{z}$ will again vanish by symmetry. The term $\boldsymbol{\mu} \boldsymbol{\mu}^{\mathrm{T}}$ is constant and can be taken outside the integral, which itself is unity because the Gaussian distribution is normalized. Consider the term involving $\mathbf{z z}^{T}$. Again, we can make use of the eigenvector expansion of the covariance matrix given by (2.45), together with the completeness of the set of eigenvectors, to write

$$
\begin{equation*}
\mathbf{z}=\sum_{j=1}^{D} y_{j} \mathbf{u}_{j} \tag{2.60}
\end{equation*}
$$

where $y_{j}=\mathbf{u}_{j}^{\mathrm{T}} \mathbf{z}$, which gives

$$
\begin{align*}
& \frac{1}{(2 \pi)^{D / 2}} \frac{1}{|\boldsymbol{\Sigma}|^{1 / 2}} \int \exp \left\{-\frac{1}{2} \mathbf{z}^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} \mathbf{z}\right\} \mathbf{z} \mathbf{z}^{\mathrm{T}} \mathrm{~d} \mathbf{z} \\
& =\frac{1}{(2 \pi)^{D / 2}} \frac{1}{|\boldsymbol{\Sigma}|^{1 / 2}} \sum_{i=1}^{D} \sum_{j=1}^{D} \mathbf{u}_{i} \mathbf{u}_{j}^{\mathrm{T}} \int \exp \left\{-\sum_{k=1}^{D} \frac{y_{k}^{2}}{2 \lambda_{k}}\right\} y_{i} y_{j} \mathrm{~d} \mathbf{y} \\
& =\sum_{i=1}^{D} \mathbf{u}_{i} \mathbf{u}_{i}^{\mathrm{T}} \lambda_{i}=\mathbf{\Sigma} \tag{2.61}
\end{align*}
$$

where we have made use of the eigenvector equation (2.45), together with the fact that the integral on the right-hand side of the middle line vanishes by symmetry unless $i=j$, and in the final line we have made use of the results (1.50) and (2.55), together with (2.48). Thus we have

$$
\begin{equation*}
\mathbb{E}\left[\mathbf{x x}^{\mathrm{T}}\right]=\boldsymbol{\mu} \boldsymbol{\mu}^{\mathrm{T}}+\boldsymbol{\Sigma} \tag{2.62}
\end{equation*}
$$

For single random variables, we subtracted the mean before taking second moments in order to define a variance. Similarly, in the multivariate case it is again convenient to subtract off the mean, giving rise to the covariance of a random vector x defined by

$$
\begin{equation*}
\operatorname{cov}[\mathbf{x}]=\mathbb{E}\left[(\mathbf{x}-\mathbb{E}[\mathbf{x}])(\mathbf{x}-\mathbb{E}[\mathbf{x}])^{\mathrm{T}}\right] \tag{2.63}
\end{equation*}
$$

For the specific case of a Gaussian distribution, we can make use of $\mathbb{E}[\mathbf{x}]=\boldsymbol{\mu}$, together with the result (2.62), to give

$$
\begin{equation*}
\operatorname{cov}[\mathbf{x}]=\boldsymbol{\Sigma} \tag{2.64}
\end{equation*}
$$

Because the parameter matrix $\boldsymbol{\Sigma}$ governs the covariance of \mathbf{x} under the Gaussian distribution, it is called the covariance matrix.

Although the Gaussian distribution (2.43) is widely used as a density model, it suffers from some significant limitations. Consider the number of free parameters in the distribution. A general symmetric covariance matrix $\boldsymbol{\Sigma}$ will have $D(D+1) / 2$ independent parameters, and there are another D independent parameters in $\boldsymbol{\mu}$, giving $D(D+3) / 2$ parameters in total. For large D, the total number of parameters

Figure 2.8 Contours of constant probability density for a Gaussian distribution in two dimensions in which the covariance matrix is (a) of general form, (b) diagonal, in which the elliptical contours are aligned with the coordinate axes, and (c) proportional to the identity matrix, in which the contours are concentric circles.
therefore grows quadratically with D, and the computational task of manipulating and inverting large matrices can become prohibitive. One way to address this problem is to use restricted forms of the covariance matrix. If we consider covariance matrices that are diagonal, so that $\boldsymbol{\Sigma}=\operatorname{diag}\left(\sigma_{i}^{2}\right)$, we then have a total of $2 D$ independent parameters in the density model. The corresponding contours of constant density are given by axis-aligned ellipsoids. We could further restrict the covariance matrix to be proportional to the identity matrix, $\boldsymbol{\Sigma}=\sigma^{2} \mathbf{I}$, known as an isotropic covariance, giving $D+1$ independent parameters in the model and spherical surfaces of constant density. The three possibilities of general, diagonal, and isotropic covariance matrices are illustrated in Figure 2.8. Unfortunately, whereas such approaches limit the number of degrees of freedom in the distribution and make inversion of the covariance matrix a much faster operation, they also greatly restrict the form of the probability density and limit its ability to capture interesting correlations in the data.

A further limitation of the Gaussian distribution is that it is intrinsically unimodal (i.e., has a single maximum) and so is unable to provide a good approximation to multimodal distributions. Thus the Gaussian distribution can be both too flexible, in the sense of having too many parameters, while also being too limited in the range of distributions that it can adequately represent. We will see later that the introduction of latent variables, also called hidden variables or unobserved variables, allows both of these problems to be addressed. In particular, a rich family of multimodal distributions is obtained by introducing discrete latent variables leading to mixtures of Gaussians, as discussed in Section 2.3.9. Similarly, the introduction of continuous latent variables, as described in Chapter 12, leads to models in which the number of free parameters can be controlled independently of the dimensionality D of the data space while still allowing the model to capture the dominant correlations in the data set. Indeed, these two approaches can be combined and further extended to derive a very rich set of hierarchical models that can be adapted to a broad range of prac-

Section 8.3

Section 13.3 tical applications. For instance, the Gaussian version of the Markov random field, which is widely used as a probabilistic model of images, is a Gaussian distribution over the joint space of pixel intensities but rendered tractable through the imposition of considerable structure reflecting the spatial organization of the pixels. Similarly, the linear dynamical system, used to model time series data for applications such as tracking, is also a joint Gaussian distribution over a potentially large number of observed and latent variables and again is tractable due to the structure imposed on the distribution. A powerful framework for expressing the form and properties of
such complex distributions is that of probabilistic graphical models, which will form the subject of Chapter 8.

2.3.1 Conditional Gaussian distributions

An important property of the multivariate Gaussian distribution is that if two sets of variables are jointly Gaussian, then the conditional distribution of one set conditioned on the other is again Gaussian. Similarly, the marginal distribution of either set is also Gaussian.

Consider first the case of conditional distributions. Suppose \mathbf{x} is a D-dimensional vector with Gaussian distribution $\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$ and that we partition \mathbf{x} into two disjoint subsets \mathbf{x}_{a} and \mathbf{x}_{b}. Without loss of generality, we can take \mathbf{x}_{a} to form the first M components of \mathbf{x}, with \mathbf{x}_{b} comprising the remaining $D-M$ components, so that

$$
\begin{equation*}
\mathbf{x}=\binom{\mathbf{x}_{a}}{\mathbf{x}_{b}} . \tag{2.65}
\end{equation*}
$$

We also define corresponding partitions of the mean vector $\boldsymbol{\mu}$ given by

$$
\begin{equation*}
\boldsymbol{\mu}=\binom{\boldsymbol{\mu}_{a}}{\boldsymbol{\mu}_{b}} \tag{2.66}
\end{equation*}
$$

and of the covariance matrix $\boldsymbol{\Sigma}$ given by

$$
\boldsymbol{\Sigma}=\left(\begin{array}{ll}
\boldsymbol{\Sigma}_{a a} & \boldsymbol{\Sigma}_{a b} \tag{2.67}\\
\boldsymbol{\Sigma}_{b a} & \boldsymbol{\Sigma}_{b b}
\end{array}\right)
$$

Note that the symmetry $\boldsymbol{\Sigma}^{\mathrm{T}}=\boldsymbol{\Sigma}$ of the covariance matrix implies that $\boldsymbol{\Sigma}_{a a}$ and $\boldsymbol{\Sigma}_{b b}$ are symmetric, while $\boldsymbol{\Sigma}_{b a}=\boldsymbol{\Sigma}_{a b}^{\mathrm{T}}$.

In many situations, it will be convenient to work with the inverse of the covariance matrix

$$
\begin{equation*}
\boldsymbol{\Lambda} \equiv \mathbf{\Sigma}^{-1} \tag{2.68}
\end{equation*}
$$

which is known as the precision matrix. In fact, we shall see that some properties of Gaussian distributions are most naturally expressed in terms of the covariance, whereas others take a simpler form when viewed in terms of the precision. We therefore also introduce the partitioned form of the precision matrix

$$
\boldsymbol{\Lambda}=\left(\begin{array}{ll}
\boldsymbol{\Lambda}_{a a} & \boldsymbol{\Lambda}_{a b} \tag{2.69}\\
\boldsymbol{\Lambda}_{b a} & \boldsymbol{\Lambda}_{b b}
\end{array}\right)
$$

corresponding to the partitioning (2.65) of the vector \mathbf{x}. Because the inverse of a symmetric matrix is also symmetric, we see that $\boldsymbol{\Lambda}_{a a}$ and $\boldsymbol{\Lambda}_{b b}$ are symmetric, while $\boldsymbol{\Lambda}_{a b}^{\mathrm{T}}=\boldsymbol{\Lambda}_{b a}$. It should be stressed at this point that, for instance, $\boldsymbol{\Lambda}_{a a}$ is not simply given by the inverse of $\boldsymbol{\Sigma}_{a a}$. In fact, we shall shortly examine the relation between the inverse of a partitioned matrix and the inverses of its partitions.

Let us begin by finding an expression for the conditional distribution $p\left(\mathbf{x}_{a} \mid \mathbf{x}_{b}\right)$. From the product rule of probability, we see that this conditional distribution can be
evaluated from the joint distribution $p(\mathbf{x})=p\left(\mathbf{x}_{a}, \mathbf{x}_{b}\right)$ simply by fixing \mathbf{x}_{b} to the observed value and normalizing the resulting expression to obtain a valid probability distribution over \mathbf{x}_{a}. Instead of performing this normalization explicitly, we can obtain the solution more efficiently by considering the quadratic form in the exponent of the Gaussian distribution given by (2.44) and then reinstating the normalization coefficient at the end of the calculation. If we make use of the partitioning (2.65), (2.66), and (2.69), we obtain

$$
\begin{align*}
-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})= \\
\quad-\frac{1}{2}\left(\mathbf{x}_{a}-\boldsymbol{\mu}_{a}\right)^{\mathrm{T}} \boldsymbol{\Lambda}_{a a}\left(\mathbf{x}_{a}-\boldsymbol{\mu}_{a}\right)-\frac{1}{2}\left(\mathbf{x}_{a}-\boldsymbol{\mu}_{a}\right)^{\mathrm{T}} \boldsymbol{\Lambda}_{a b}\left(\mathbf{x}_{b}-\boldsymbol{\mu}_{b}\right) \\
\quad-\frac{1}{2}\left(\mathbf{x}_{b}-\boldsymbol{\mu}_{b}\right)^{\mathrm{T}} \boldsymbol{\Lambda}_{b a}\left(\mathbf{x}_{a}-\boldsymbol{\mu}_{a}\right)-\frac{1}{2}\left(\mathbf{x}_{b}-\boldsymbol{\mu}_{b}\right)^{\mathrm{T}} \boldsymbol{\Lambda}_{b b}\left(\mathbf{x}_{b}-\boldsymbol{\mu}_{b}\right) \tag{2.70}
\end{align*}
$$

We see that as a function of \mathbf{x}_{a}, this is again a quadratic form, and hence the corresponding conditional distribution $p\left(\mathbf{x}_{a} \mid \mathbf{x}_{b}\right)$ will be Gaussian. Because this distribution is completely characterized by its mean and its covariance, our goal will be to identify expressions for the mean and covariance of $p\left(\mathbf{x}_{a} \mid \mathbf{x}_{b}\right)$ by inspection of (2.70).

This is an example of a rather common operation associated with Gaussian distributions, sometimes called 'completing the square', in which we are given a quadratic form defining the exponent terms in a Gaussian distribution, and we need to determine the corresponding mean and covariance. Such problems can be solved straightforwardly by noting that the exponent in a general Gaussian distribution $\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$ can be written

$$
\begin{equation*}
-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})=-\frac{1}{2} \mathbf{x}^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} \mathbf{x}+\mathbf{x}^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}+\mathrm{const} \tag{2.71}
\end{equation*}
$$

where 'const' denotes terms which are independent of \mathbf{x}, and we have made use of the symmetry of $\boldsymbol{\Sigma}$. Thus if we take our general quadratic form and express it in the form given by the right-hand side of (2.71), then we can immediately equate the matrix of coefficients entering the second order term in x to the inverse covariance matrix $\boldsymbol{\Sigma}^{-1}$ and the coefficient of the linear term in \mathbf{x} to $\boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}$, from which we can obtain $\boldsymbol{\mu}$.

Now let us apply this procedure to the conditional Gaussian distribution $p\left(\mathbf{x}_{a} \mid \mathbf{x}_{b}\right)$ for which the quadratic form in the exponent is given by (2.70). We will denote the mean and covariance of this distribution by $\boldsymbol{\mu}_{a \mid b}$ and $\boldsymbol{\Sigma}_{a \mid b}$, respectively. Consider the functional dependence of (2.70) on \mathbf{x}_{a} in which \mathbf{x}_{b} is regarded as a constant. If we pick out all terms that are second order in \mathbf{x}_{a}, we have

$$
\begin{equation*}
-\frac{1}{2} \mathbf{x}_{a}^{\mathrm{T}} \boldsymbol{\Lambda}_{a a} \mathbf{x}_{a} \tag{2.72}
\end{equation*}
$$

from which we can immediately conclude that the covariance (inverse precision) of $p\left(\mathbf{x}_{a} \mid \mathbf{x}_{b}\right)$ is given by

$$
\begin{equation*}
\boldsymbol{\Sigma}_{a \mid b}=\boldsymbol{\Lambda}_{a a}^{-1} \tag{2.73}
\end{equation*}
$$

Now consider all of the terms in (2.70) that are linear in \mathbf{x}_{a}

$$
\begin{equation*}
\mathbf{x}_{a}^{\mathrm{T}}\left\{\boldsymbol{\Lambda}_{a a} \boldsymbol{\mu}_{a}-\boldsymbol{\Lambda}_{a b}\left(\mathbf{x}_{b}-\boldsymbol{\mu}_{b}\right)\right\} \tag{2.74}
\end{equation*}
$$

where we have used $\boldsymbol{\Lambda}_{b a}^{\mathrm{T}}=\boldsymbol{\Lambda}_{a b}$. From our discussion of the general form (2.71), the coefficient of \mathbf{x}_{a} in this expression must equal $\boldsymbol{\Sigma}_{a \mid b}^{-1} \boldsymbol{\mu}_{a \mid b}$ and hence

$$
\begin{align*}
\boldsymbol{\mu}_{a \mid b} & =\boldsymbol{\Sigma}_{a \mid b}\left\{\boldsymbol{\Lambda}_{a a} \boldsymbol{\mu}_{a}-\boldsymbol{\Lambda}_{a b}\left(\mathbf{x}_{b}-\boldsymbol{\mu}_{b}\right)\right\} \\
& =\boldsymbol{\mu}_{a}-\boldsymbol{\Lambda}_{a a}^{-1} \boldsymbol{\Lambda}_{a b}\left(\mathbf{x}_{b}-\boldsymbol{\mu}_{b}\right) \tag{2.75}
\end{align*}
$$

where we have made use of (2.73).
The results (2.73) and (2.75) are expressed in terms of the partitioned precision matrix of the original joint distribution $p\left(\mathbf{x}_{a}, \mathbf{x}_{b}\right)$. We can also express these results in terms of the corresponding partitioned covariance matrix. To do this, we make use

Section 8.1.4 of the following identity for the inverse of a partitioned matrix

$$
\left(\begin{array}{ll}
\mathbf{A} & \mathbf{B} \tag{2.76}\\
\mathbf{C} & \mathbf{D}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\mathbf{M} & -\mathbf{M B D}^{-1} \\
-\mathbf{D}^{-1} \mathbf{C M} & \mathbf{D}^{-1}+\mathbf{D}^{-1} \mathbf{C M B D}^{-1}
\end{array}\right)
$$

where we have defined

$$
\begin{equation*}
\mathbf{M}=\left(\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C}\right)^{-1} \tag{2.77}
\end{equation*}
$$

The quantity \mathbf{M}^{-1} is known as the Schur complement of the matrix on the left-hand side of (2.76) with respect to the submatrix \mathbf{D}. Using the definition

$$
\left(\begin{array}{ll}
\boldsymbol{\Sigma}_{a a} & \boldsymbol{\Sigma}_{a b} \tag{2.78}\\
\boldsymbol{\Sigma}_{b a} & \boldsymbol{\Sigma}_{b b}
\end{array}\right)^{-1}=\left(\begin{array}{ll}
\boldsymbol{\Lambda}_{a a} & \boldsymbol{\Lambda}_{a b} \\
\boldsymbol{\Lambda}_{b a} & \boldsymbol{\Lambda}_{b b}
\end{array}\right)
$$

and making use of (2.76), we have

$$
\begin{align*}
\boldsymbol{\Lambda}_{a a} & =\left(\boldsymbol{\Sigma}_{a a}-\boldsymbol{\Sigma}_{a b} \boldsymbol{\Sigma}_{b b}^{-1} \boldsymbol{\Sigma}_{b a}\right)^{-1} \tag{2.79}\\
\boldsymbol{\Lambda}_{a b} & =-\left(\boldsymbol{\Sigma}_{a a}-\boldsymbol{\Sigma}_{a b} \boldsymbol{\Sigma}_{b b}^{-1} \boldsymbol{\Sigma}_{b a}\right)^{-1} \boldsymbol{\Sigma}_{a b} \boldsymbol{\Sigma}_{b b}^{-1} \tag{2.80}
\end{align*}
$$

From these we obtain the following expressions for the mean and covariance of the conditional distribution $p\left(\mathbf{x}_{a} \mid \mathbf{x}_{b}\right)$

$$
\begin{align*}
\boldsymbol{\mu}_{a \mid b} & =\boldsymbol{\mu}_{a}+\boldsymbol{\Sigma}_{a b} \boldsymbol{\Sigma}_{b b}^{-1}\left(\mathbf{x}_{b}-\boldsymbol{\mu}_{b}\right) \tag{2.81}\\
\boldsymbol{\Sigma}_{a \mid b} & =\boldsymbol{\Sigma}_{a a}-\boldsymbol{\Sigma}_{a b} \boldsymbol{\Sigma}_{b b}^{-1} \boldsymbol{\Sigma}_{b a} . \tag{2.82}
\end{align*}
$$

Comparing (2.73) and (2.82), we see that the conditional distribution $p\left(\mathbf{x}_{a} \mid \mathbf{x}_{b}\right)$ takes a simpler form when expressed in terms of the partitioned precision matrix than when it is expressed in terms of the partitioned covariance matrix. Note that the mean of the conditional distribution $p\left(\mathbf{x}_{a} \mid \mathbf{x}_{b}\right)$, given by (2.81), is a linear function of \mathbf{x}_{b} and that the covariance, given by (2.82), is independent of \mathbf{x}_{a}. This represents an example of a linear-Gaussian model.

2.3.2 Marginal Gaussian distributions

We have seen that if a joint distribution $p\left(\mathbf{x}_{a}, \mathbf{x}_{b}\right)$ is Gaussian, then the conditional distribution $p\left(\mathbf{x}_{a} \mid \mathbf{x}_{b}\right)$ will again be Gaussian. Now we turn to a discussion of the marginal distribution given by

$$
\begin{equation*}
p\left(\mathbf{x}_{a}\right)=\int p\left(\mathbf{x}_{a}, \mathbf{x}_{b}\right) \mathrm{d} \mathbf{x}_{b} \tag{2.83}
\end{equation*}
$$

which, as we shall see, is also Gaussian. Once again, our strategy for evaluating this distribution efficiently will be to focus on the quadratic form in the exponent of the joint distribution and thereby to identify the mean and covariance of the marginal distribution $p\left(\mathbf{x}_{a}\right)$.

The quadratic form for the joint distribution can be expressed, using the partitioned precision matrix, in the form (2.70). Because our goal is to integrate out x_{b}, this is most easily achieved by first considering the terms involving x_{b} and then completing the square in order to facilitate integration. Picking out just those terms that involve \mathbf{x}_{b}, we have

$$
\begin{equation*}
-\frac{1}{2} \mathbf{x}_{b}^{\mathrm{T}} \boldsymbol{\Lambda}_{b b} \mathbf{x}_{b}+\mathbf{x}_{b}^{T} \mathbf{m}=-\frac{1}{2}\left(\mathbf{x}_{b}-\boldsymbol{\Lambda}_{b b}^{-1} \mathbf{m}\right)^{\mathrm{T}} \boldsymbol{\Lambda}_{b b}\left(\mathbf{x}_{b}-\boldsymbol{\Lambda}_{b b}^{-1} \mathbf{m}\right)+\frac{1}{2} \mathbf{m}^{\mathrm{T}} \boldsymbol{\Lambda}_{b b}^{-1} \mathbf{m} \tag{2.84}
\end{equation*}
$$

where we have defined

$$
\begin{equation*}
\mathbf{m}=\boldsymbol{\Lambda}_{b b} \boldsymbol{\mu}_{b}-\boldsymbol{\Lambda}_{b a}\left(\mathbf{x}_{a}-\boldsymbol{\mu}_{a}\right) \tag{2.85}
\end{equation*}
$$

We see that the dependence on \mathbf{x}_{b} has been cast into the standard quadratic form of a Gaussian distribution corresponding to the first term on the right-hand side of (2.84), plus a term that does not depend on \mathbf{x}_{b} (but that does depend on \mathbf{x}_{a}). Thus, when we take the exponential of this quadratic form, we see that the integration over \mathbf{x}_{b} required by (2.83) will take the form

$$
\begin{equation*}
\int \exp \left\{-\frac{1}{2}\left(\mathbf{x}_{b}-\boldsymbol{\Lambda}_{b b}^{-1} \mathbf{m}\right)^{\mathrm{T}} \boldsymbol{\Lambda}_{b b}\left(\mathbf{x}_{b}-\boldsymbol{\Lambda}_{b b}^{-1} \mathbf{m}\right)\right\} \mathrm{d} \mathbf{x}_{b} \tag{2.86}
\end{equation*}
$$

This integration is easily performed by noting that it is the integral over an unnormalized Gaussian, and so the result will be the reciprocal of the normalization coefficient. We know from the form of the normalized Gaussian given by (2.43), that this coefficient is independent of the mean and depends only on the determinant of the covariance matrix. Thus, by completing the square with respect to \mathbf{x}_{b}, we can integrate out \mathbf{x}_{b} and the only term remaining from the contributions on the left-hand side of (2.84) that depends on \mathbf{x}_{a} is the last term on the right-hand side of (2.84) in which \mathbf{m} is given by (2.85). Combining this term with the remaining terms from
(2.70) that depend on \mathbf{x}_{a}, we obtain

$$
\begin{align*}
& \frac{1}{2}\left[\boldsymbol{\Lambda}_{b b} \boldsymbol{\mu}_{b}-\boldsymbol{\Lambda}_{b a}\left(\mathbf{x}_{a}-\boldsymbol{\mu}_{a}\right)\right]^{\mathrm{T}} \boldsymbol{\Lambda}_{b b}^{-1}\left[\boldsymbol{\Lambda}_{b b} \boldsymbol{\mu}_{b}-\boldsymbol{\Lambda}_{b a}\left(\mathbf{x}_{a}-\boldsymbol{\mu}_{a}\right)\right] \\
&-\frac{1}{2} \mathbf{x}_{a}^{\mathrm{T}} \boldsymbol{\Lambda}_{a a} \mathbf{x}_{a}+\mathbf{x}_{a}^{\mathrm{T}}\left(\boldsymbol{\Lambda}_{a a} \boldsymbol{\mu}_{a}+\boldsymbol{\Lambda}_{a b} \boldsymbol{\mu}_{b}\right)+\mathrm{const} \\
&=-\frac{1}{2} \mathbf{x}_{a}^{\mathrm{T}}\left(\boldsymbol{\Lambda}_{a a}-\boldsymbol{\Lambda}_{a b} \boldsymbol{\Lambda}_{b b}^{-1} \boldsymbol{\Lambda}_{b a}\right) \mathbf{x}_{a} \\
& \quad+\mathbf{x}_{a}^{\mathrm{T}}\left(\boldsymbol{\Lambda}_{a a}-\boldsymbol{\Lambda}_{a b} \boldsymbol{\Lambda}_{b b}^{-1} \boldsymbol{\Lambda}_{b a}\right)^{-1} \boldsymbol{\mu}_{a}+\mathrm{const} \tag{2.87}
\end{align*}
$$

where 'const' denotes quantities independent of \mathbf{x}_{a}. Again, by comparison with (2.71), we see that the covariance of the marginal distribution of $p\left(\mathbf{x}_{a}\right)$ is given by

$$
\begin{equation*}
\boldsymbol{\Sigma}_{a}=\left(\boldsymbol{\Lambda}_{a a}-\boldsymbol{\Lambda}_{a b} \boldsymbol{\Lambda}_{b b}^{-1} \boldsymbol{\Lambda}_{b a}\right)^{-1} \tag{2.88}
\end{equation*}
$$

Similarly, the mean is given by

$$
\begin{equation*}
\boldsymbol{\Sigma}_{a}\left(\boldsymbol{\Lambda}_{a a}-\boldsymbol{\Lambda}_{a b} \boldsymbol{\Lambda}_{b b}^{-1} \boldsymbol{\Lambda}_{b a}\right) \boldsymbol{\mu}_{a}=\boldsymbol{\mu}_{a} \tag{2.89}
\end{equation*}
$$

where we have used (2.88). The covariance in (2.88) is expressed in terms of the partitioned precision matrix given by (2.69). We can rewrite this in terms of the corresponding partitioning of the covariance matrix given by (2.67), as we did for the conditional distribution. These partitioned matrices are related by

$$
\left(\begin{array}{ll}
\boldsymbol{\Lambda}_{a a} & \boldsymbol{\Lambda}_{a b} \tag{2.90}\\
\boldsymbol{\Lambda}_{b a} & \boldsymbol{\Lambda}_{b b}
\end{array}\right)^{-1}=\left(\begin{array}{ll}
\boldsymbol{\Sigma}_{a a} & \boldsymbol{\Sigma}_{a b} \\
\boldsymbol{\Sigma}_{b a} & \boldsymbol{\Sigma}_{b b}
\end{array}\right)
$$

Making use of (2.76), we then have

$$
\begin{equation*}
\left(\boldsymbol{\Lambda}_{a a}-\boldsymbol{\Lambda}_{a b} \boldsymbol{\Lambda}_{b b}^{-1} \boldsymbol{\Lambda}_{b a}\right)^{-1}=\boldsymbol{\Sigma}_{a a} \tag{2.91}
\end{equation*}
$$

Thus we obtain the intuitively satisfying result that the marginal distribution $p\left(\mathbf{x}_{a}\right)$ has mean and covariance given by

$$
\begin{align*}
\mathbb{E}\left[\mathbf{x}_{a}\right] & =\boldsymbol{\mu}_{a} \tag{2.92}\\
\operatorname{cov}\left[\mathbf{x}_{a}\right] & =\boldsymbol{\Sigma}_{a a} . \tag{2.93}
\end{align*}
$$

We see that for a marginal distribution, the mean and covariance are most simply expressed in terms of the partitioned covariance matrix, in contrast to the conditional distribution for which the partitioned precision matrix gives rise to simpler expressions.

Our results for the marginal and conditional distributions of a partitioned Gaussian are summarized below.

Partitioned Gaussians

Given a joint Gaussian distribution $\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\Lambda} \equiv \boldsymbol{\Sigma}^{-1}$ and

$$
\begin{equation*}
\mathbf{x}=\binom{\mathbf{x}_{a}}{\mathbf{x}_{b}}, \quad \boldsymbol{\mu}=\binom{\boldsymbol{\mu}_{a}}{\boldsymbol{\mu}_{b}} \tag{2.94}
\end{equation*}
$$

Figure 2.9 The plot on the left shows the contours of a Gaussian distribution $p\left(x_{a}, x_{b}\right)$ over two variables, and the plot on the right shows the marginal distribution $p\left(x_{a}\right)$ (blue curve) and the conditional distribution $p\left(x_{a} \mid x_{b}\right)$ for $x_{b}=0.7$ (red curve).

$$
\boldsymbol{\Sigma}=\left(\begin{array}{ll}
\boldsymbol{\Sigma}_{a a} & \boldsymbol{\Sigma}_{a b} \tag{2.95}\\
\boldsymbol{\Sigma}_{b a} & \boldsymbol{\Sigma}_{b b}
\end{array}\right), \quad \boldsymbol{\Lambda}=\left(\begin{array}{cc}
\boldsymbol{\Lambda}_{a a} & \boldsymbol{\Lambda}_{a b} \\
\boldsymbol{\Lambda}_{b a} & \boldsymbol{\Lambda}_{b b}
\end{array}\right)
$$

Conditional distribution:

$$
\begin{align*}
p\left(\mathbf{x}_{a} \mid \mathbf{x}_{b}\right) & =\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{a \mid b}, \boldsymbol{\Lambda}_{a a}^{-1}\right) \tag{2.96}\\
\boldsymbol{\mu}_{a \mid b} & =\boldsymbol{\mu}_{a}-\boldsymbol{\Lambda}_{a a}^{-1} \boldsymbol{\Lambda}_{a b}\left(\mathbf{x}_{b}-\boldsymbol{\mu}_{b}\right) \tag{2.97}
\end{align*}
$$

Marginal distribution:

$$
\begin{equation*}
p\left(\mathbf{x}_{a}\right)=\mathcal{N}\left(\mathbf{x}_{a} \mid \boldsymbol{\mu}_{a}, \boldsymbol{\Sigma}_{a a}\right) \tag{2.98}
\end{equation*}
$$

We illustrate the idea of conditional and marginal distributions associated with a multivariate Gaussian using an example involving two variables in Figure 2.9.

2.3.3 Bayes' theorem for Gaussian variables

In Sections 2.3.1 and 2.3.2, we considered a Gaussian $p(\mathbf{x})$ in which we partitioned the vector \mathbf{x} into two subvectors $\mathbf{x}=\left(\mathbf{x}_{a}, \mathbf{x}_{b}\right)$ and then found expressions for the conditional distribution $p\left(\mathbf{x}_{a} \mid \mathbf{x}_{b}\right)$ and the marginal distribution $p\left(\mathbf{x}_{a}\right)$. We noted that the mean of the conditional distribution $p\left(\mathbf{x}_{a} \mid \mathbf{x}_{b}\right)$ was a linear function of \mathbf{x}_{b}. Here we shall suppose that we are given a Gaussian marginal distribution $p(\mathbf{x})$ and a Gaussian conditional distribution $p(\mathbf{y} \mid \mathbf{x})$ in which $p(\mathbf{y} \mid \mathbf{x})$ has a mean that is a linear function of \mathbf{x}, and a covariance which is independent of \mathbf{x}. This is an example of
a linear Gaussian model (Roweis and Ghahramani, 1999), which we shall study in greater generality in Section 8.1.4. We wish to find the marginal distribution $p(\mathbf{y})$ and the conditional distribution $p(\mathbf{x} \mid \mathbf{y})$. This is a problem that will arise frequently in subsequent chapters, and it will prove convenient to derive the general results here.

We shall take the marginal and conditional distributions to be

$$
\begin{align*}
p(\mathbf{x}) & =\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}, \mathbf{\Lambda}^{-1}\right) \tag{2.99}\\
p(\mathbf{y} \mid \mathbf{x}) & =\mathcal{N}\left(\mathbf{y} \mid \mathbf{A} \mathbf{x}+\mathbf{b}, \mathbf{L}^{-1}\right) \tag{2.100}
\end{align*}
$$

where $\boldsymbol{\mu}, \mathbf{A}$, and \mathbf{b} are parameters governing the means, and $\boldsymbol{\Lambda}$ and \mathbf{L} are precision matrices. If \mathbf{x} has dimensionality M and \mathbf{y} has dimensionality D, then the matrix \mathbf{A} has size $D \times M$.

First we find an expression for the joint distribution over \mathbf{x} and \mathbf{y}. To do this, we define

$$
\begin{equation*}
\mathrm{z}=\binom{\mathrm{x}}{\mathrm{y}} \tag{2.101}
\end{equation*}
$$

and then consider the log of the joint distribution

$$
\begin{align*}
\ln p(\mathbf{z})= & \ln p(\mathbf{x})+\ln p(\mathbf{y} \mid \mathbf{x}) \\
= & -\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Lambda}(\mathbf{x}-\boldsymbol{\mu}) \\
& -\frac{1}{2}(\mathbf{y}-\mathbf{A} \mathbf{x}-\mathbf{b})^{\mathrm{T}} \mathbf{L}(\mathbf{y}-\mathbf{A} \mathbf{x}-\mathbf{b})+\mathrm{const} \tag{2.102}
\end{align*}
$$

where 'const' denotes terms independent of \mathbf{x} and \mathbf{y}. As before, we see that this is a quadratic function of the components of \mathbf{z}, and hence $p(\mathbf{z})$ is Gaussian distribution. To find the precision of this Gaussian, we consider the second order terms in (2.102), which can be written as

$$
\begin{align*}
&- \frac{1}{2} \mathbf{x}^{\mathrm{T}}\left(\boldsymbol{\Lambda}+\mathbf{A}^{\mathrm{T}} \mathbf{L} \mathbf{A}\right) \mathbf{x}-\frac{1}{2} \mathbf{y}^{\mathrm{T}} \mathbf{L} \mathbf{y}+\frac{1}{2} \mathbf{y}^{\mathrm{T}} \mathbf{L} \mathbf{A} \mathbf{x}+\frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{L} \mathbf{y} \\
& \quad=-\frac{1}{2}\binom{\mathbf{x}}{\mathbf{y}}^{\mathrm{T}}\left(\begin{array}{cc}
\mathbf{\Lambda}+\mathbf{A}^{\mathrm{T}} \mathbf{L} \mathbf{A} & -\mathbf{A}^{\mathrm{T}} \mathbf{L} \\
-\mathbf{L} \mathbf{A} & \mathbf{L}
\end{array}\right)\binom{\mathbf{x}}{\mathbf{y}}=-\frac{1}{2} \mathbf{z}^{\mathrm{T}} \mathbf{R} \mathbf{z} \tag{2.103}
\end{align*}
$$

and so the Gaussian distribution over \mathbf{z} has precision (inverse covariance) matrix given by

$$
\mathbf{R}=\left(\begin{array}{cc}
\boldsymbol{\Lambda}+\mathbf{A}^{\mathrm{T}} \mathbf{L} \mathbf{A} & -\mathbf{A}^{\mathrm{T}} \mathbf{L} \tag{2.104}\\
-\mathbf{L} \mathbf{A} & \mathbf{L}
\end{array}\right)
$$

The covariance matrix is found by taking the inverse of the precision, which can be done using the matrix inversion formula (2.76) to give

$$
\operatorname{cov}[\mathbf{z}]=\mathbf{R}^{-1}=\left(\begin{array}{cc}
\boldsymbol{\Lambda}^{-1} & \boldsymbol{\Lambda}^{-1} \mathbf{A}^{\mathrm{T}} \tag{2.105}\\
\mathbf{A} \boldsymbol{\Lambda}^{-1} & \mathbf{L}^{-1}+\mathbf{A} \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathrm{T}}
\end{array}\right) .
$$

Similarly, we can find the mean of the Gaussian distribution over \mathbf{z} by identifying the linear terms in (2.102), which are given by

$$
\begin{equation*}
\mathbf{x}^{\mathrm{T}} \boldsymbol{\Lambda} \boldsymbol{\mu}-\mathrm{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{L b}+\mathbf{y}^{\mathrm{T}} \mathbf{L b}=\binom{\mathbf{x}}{\mathbf{y}}^{\mathrm{T}}\binom{\boldsymbol{\Lambda} \boldsymbol{\mu}-\mathbf{A}^{\mathrm{T}} \mathbf{L b}}{\mathbf{L b}} . \tag{2.106}
\end{equation*}
$$

Using our earlier result (2.71) obtained by completing the square over the quadratic form of a multivariate Gaussian, we find that the mean of \mathbf{z} is given by

$$
\begin{equation*}
\mathbb{E}[\mathbf{z}]=\mathbf{R}^{-1}\binom{\boldsymbol{\Lambda} \boldsymbol{\mu}-\mathbf{A}^{\mathrm{T}} \mathbf{L b}}{\mathbf{L b}} . \tag{2.107}
\end{equation*}
$$

Exercise 2.30 Making use of (2.105), we then obtain

$$
\begin{equation*}
\mathbb{E}[\mathbf{z}]=\binom{\boldsymbol{\mu}}{\mathbf{A} \boldsymbol{\mu}+\mathbf{b}} . \tag{2.108}
\end{equation*}
$$

Next we find an expression for the marginal distribution $p(\mathbf{y})$ in which we have marginalized over \mathbf{x}. Recall that the marginal distribution over a subset of the components of a Gaussian random vector takes a particularly simple form when ex-

Section 2.3

Section 2.3 pressed in terms of the partitioned covariance matrix. Specifically, its mean and covariance are given by (2.92) and (2.93), respectively. Making use of (2.105) and (2.108) we see that the mean and covariance of the marginal distribution $p(\mathbf{y})$ are given by

$$
\begin{align*}
\mathbb{E}[\mathbf{y}] & =\mathbf{A} \boldsymbol{\mu}+\mathbf{b} \tag{2.109}\\
\operatorname{cov}[\mathbf{y}] & =\mathbf{L}^{-1}+\mathbf{A} \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathrm{T}} . \tag{2.110}
\end{align*}
$$

A special case of this result is when $\mathbf{A}=\mathbf{I}$, in which case it reduces to the convolution of two Gaussians, for which we see that the mean of the convolution is the sum of the mean of the two Gaussians, and the covariance of the convolution is the sum of their covariances.

Finally, we seek an expression for the conditional $p(\mathbf{x} \mid \mathbf{y})$. Recall that the results for the conditional distribution are most easily expressed in terms of the partitioned precision matrix, using (2.73) and (2.75). Applying these results to (2.105) and (2.108) we see that the conditional distribution $p(\mathbf{x} \mid \mathbf{y})$ has mean and covariance given by

$$
\begin{align*}
\mathbb{E}[\mathbf{x} \mid \mathbf{y}] & =\left(\mathbf{\Lambda}+\mathbf{A}^{\mathrm{T}} \mathbf{L} \mathbf{A}\right)^{-1}\left\{\mathbf{A}^{\mathrm{T}} \mathbf{L}(\mathbf{y}-\mathbf{b})+\boldsymbol{\Lambda} \boldsymbol{\mu}\right\} \tag{2.111}\\
\operatorname{cov}[\mathbf{x} \mid \mathbf{y}] & =\left(\mathbf{\Lambda}+\mathbf{A}^{\mathrm{T}} \mathbf{L} \mathbf{A}\right)^{-1} \tag{2.112}
\end{align*}
$$

The evaluation of this conditional can be seen as an example of Bayes' theorem. We can interpret the distribution $p(\mathbf{x})$ as a prior distribution over \mathbf{x}. If the variable \mathbf{y} is observed, then the conditional distribution $p(\mathbf{x} \mid \mathbf{y})$ represents the corresponding posterior distribution over x . Having found the marginal and conditional distributions, we effectively expressed the joint distribution $p(\mathbf{z})=p(\mathbf{x}) p(\mathbf{y} \mid \mathbf{x})$ in the form $p(\mathbf{x} \mid \mathbf{y}) p(\mathbf{y})$. These results are summarized below.

Marginal and Conditional Gaussians

Given a marginal Gaussian distribution for \mathbf{x} and a conditional Gaussian distribution for \mathbf{y} given \mathbf{x} in the form

$$
\begin{align*}
p(\mathbf{x}) & =\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1}\right) \tag{2.113}\\
p(\mathbf{y} \mid \mathbf{x}) & =\mathcal{N}\left(\mathbf{y} \mid \mathbf{A} \mathbf{x}+\mathbf{b}, \mathbf{L}^{-1}\right) \tag{2.114}
\end{align*}
$$

the marginal distribution of \mathbf{y} and the conditional distribution of \mathbf{x} given \mathbf{y} are given by

$$
\begin{align*}
p(\mathbf{y}) & =\mathcal{N}\left(\mathbf{y} \mid \mathbf{A} \boldsymbol{\mu}+\mathbf{b}, \mathbf{L}^{-1}+\mathbf{A} \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathrm{T}}\right) \tag{2.115}\\
p(\mathbf{x} \mid \mathbf{y}) & =\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\Sigma}\left\{\mathbf{A}^{\mathrm{T}} \mathbf{L}(\mathbf{y}-\mathbf{b})+\boldsymbol{\Lambda} \boldsymbol{\mu}\right\}, \mathbf{\Sigma}\right) \tag{2.116}
\end{align*}
$$

where

$$
\begin{equation*}
\boldsymbol{\Sigma}=\left(\boldsymbol{\Lambda}+\mathbf{A}^{\mathrm{T}} \mathbf{L} \mathbf{A}\right)^{-1} \tag{2.117}
\end{equation*}
$$

2.3.4 Maximum likelihood for the Gaussian

Given a data set $\mathbf{X}=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)^{\mathrm{T}}$ in which the observations $\left\{\mathbf{x}_{n}\right\}$ are assumed to be drawn independently from a multivariate Gaussian distribution, we can estimate the parameters of the distribution by maximum likelihood. The log likelihood function is given by

$$
\begin{equation*}
\ln p(\mathbf{X} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=-\frac{N D}{2} \ln (2 \pi)-\frac{N}{2} \ln |\boldsymbol{\Sigma}|-\frac{1}{2} \sum_{n=1}^{N}\left(\mathbf{x}_{n}-\boldsymbol{\mu}\right)^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{n}-\boldsymbol{\mu}\right) \tag{2.118}
\end{equation*}
$$

By simple rearrangement, we see that the likelihood function depends on the data set only through the two quantities

$$
\begin{equation*}
\sum_{n=1}^{N} \mathbf{x}_{n}, \quad \quad \sum_{n=1}^{N} \mathbf{x}_{n} \mathbf{x}_{n}^{\mathrm{T}} \tag{2.119}
\end{equation*}
$$

These are known as the sufficient statistics for the Gaussian distribution. Using (C.19), the derivative of the log likelihood with respect to $\boldsymbol{\mu}$ is given by

$$
\begin{equation*}
\frac{\partial}{\partial \boldsymbol{\mu}} \ln p(\mathbf{X} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\sum_{n=1}^{N} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{n}-\boldsymbol{\mu}\right) \tag{2.120}
\end{equation*}
$$

and setting this derivative to zero, we obtain the solution for the maximum likelihood estimate of the mean given by

$$
\begin{equation*}
\boldsymbol{\mu}_{\mathrm{ML}}=\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n} \tag{2.121}
\end{equation*}
$$

Exercise 2.34

Exercise 2.35
which is the mean of the observed set of data points. The maximization of (2.118) with respect to Σ is rather more involved. The simplest approach is to ignore the symmetry constraint and show that the resulting solution is symmetric as required. Alternative derivations of this result, which impose the symmetry and positive definiteness constraints explicitly, can be found in Magnus and Neudecker (1999). The result is as expected and takes the form

$$
\begin{equation*}
\boldsymbol{\Sigma}_{\mathrm{ML}}=\frac{1}{N} \sum_{n=1}^{N}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}}\right)\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}}\right)^{\mathrm{T}} \tag{2.122}
\end{equation*}
$$

which involves $\boldsymbol{\mu}_{\mathrm{ML}}$ because this is the result of a joint maximization with respect to $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$. Note that the solution (2.121) for $\boldsymbol{\mu}_{\mathrm{ML}}$ does not depend on $\boldsymbol{\Sigma}_{\mathrm{ML}}$, and so we can first evaluate $\boldsymbol{\mu}_{\mathrm{ML}}$ and then use this to evaluate $\boldsymbol{\Sigma}_{\mathrm{ML}}$.

If we evaluate the expectations of the maximum likelihood solutions under the true distribution, we obtain the following results

$$
\begin{align*}
\mathbb{E}\left[\boldsymbol{\mu}_{\mathrm{ML}}\right] & =\boldsymbol{\mu} \tag{2.123}\\
\mathbb{E}\left[\boldsymbol{\Sigma}_{\mathrm{ML}}\right] & =\frac{N-1}{N} \boldsymbol{\Sigma} \tag{2.124}
\end{align*}
$$

We see that the expectation of the maximum likelihood estimate for the mean is equal to the true mean. However, the maximum likelihood estimate for the covariance has an expectation that is less than the true value, and hence it is biased. We can correct this bias by defining a different estimator $\widetilde{\Sigma}$ given by

$$
\begin{equation*}
\widetilde{\boldsymbol{\Sigma}}=\frac{1}{N-1} \sum_{n=1}^{N}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}}\right)\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}}\right)^{\mathrm{T}} \tag{2.125}
\end{equation*}
$$

Clearly from (2.122) and (2.124), the expectation of $\widetilde{\Sigma}$ is equal to $\boldsymbol{\Sigma}$.

2.3.5 Sequential estimation

Our discussion of the maximum likelihood solution for the parameters of a Gaussian distribution provides a convenient opportunity to give a more general discussion of the topic of sequential estimation for maximum likelihood. Sequential methods allow data points to be processed one at a time and then discarded and are important for on-line applications, and also where large data sets are involved so that batch processing of all data points at once is infeasible.

Consider the result (2.121) for the maximum likelihood estimator of the mean $\boldsymbol{\mu}_{\mathrm{ML}}$, which we will denote by $\boldsymbol{\mu}_{\mathrm{ML}}^{(N)}$ when it is based on N observations. If we

Figure 2.10 A schematic illustration of two correlated random variables z and θ, together with the regression function $f(\theta)$ given by the conditional expectation $\mathbb{E}[z \mid \theta]$. The RobbinsMonro algorithm provides a general sequential procedure for finding the root θ^{\star} of such functions.

dissect out the contribution from the final data point \mathbf{x}_{N}, we obtain

$$
\begin{align*}
\boldsymbol{\mu}_{\mathrm{ML}}^{(N)} & =\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n} \\
& =\frac{1}{N} \mathbf{x}_{N}+\frac{1}{N} \sum_{n=1}^{N-1} \mathbf{x}_{n} \\
& =\frac{1}{N} \mathbf{x}_{N}+\frac{N-1}{N} \boldsymbol{\mu}_{\mathrm{ML}}^{(N-1)} \\
& =\boldsymbol{\mu}_{\mathrm{ML}}^{(N-1)}+\frac{1}{N}\left(\mathbf{x}_{N}-\boldsymbol{\mu}_{\mathrm{ML}}^{(N-1)}\right) . \tag{2.126}
\end{align*}
$$

This result has a nice interpretation, as follows. After observing $N-1$ data points we have estimated $\boldsymbol{\mu}$ by $\boldsymbol{\mu}_{\mathrm{ML}}^{(N-1)}$. We now observe data point \mathbf{x}_{N}, and we obtain our revised estimate $\boldsymbol{\mu}_{\mathrm{ML}}^{(N)}$ by moving the old estimate a small amount, proportional to $1 / N$, in the direction of the 'error signal' $\left(\mathbf{x}_{N}-\boldsymbol{\mu}_{\mathrm{ML}}^{(N-1)}\right)$. Note that, as N increases, so the contribution from successive data points gets smaller.

The result (2.126) will clearly give the same answer as the batch result (2.121) because the two formulae are equivalent. However, we will not always be able to derive a sequential algorithm by this route, and so we seek a more general formulation of sequential learning, which leads us to the Robbins-Monro algorithm. Consider a pair of random variables θ and z governed by a joint distribution $p(z, \theta)$. The conditional expectation of z given θ defines a deterministic function $f(\theta)$ that is given by

$$
\begin{equation*}
f(\theta) \equiv \mathbb{E}[z \mid \theta]=\int z p(z \mid \theta) \mathrm{d} z \tag{2.127}
\end{equation*}
$$

and is illustrated schematically in Figure 2.10. Functions defined in this way are called regression functions.

Our goal is to find the root θ^{\star} at which $f\left(\theta^{\star}\right)=0$. If we had a large data set of observations of z and θ, then we could model the regression function directly and then obtain an estimate of its root. Suppose, however, that we observe values of z one at a time and we wish to find a corresponding sequential estimation scheme for θ^{\star}. The following general procedure for solving such problems was given by

Robbins and Monro (1951). We shall assume that the conditional variance of z is finite so that

$$
\begin{equation*}
\mathbb{E}\left[(z-f)^{2} \mid \theta\right]<\infty \tag{2.128}
\end{equation*}
$$

and we shall also, without loss of generality, consider the case where $f(\theta)>0$ for $\theta>\theta^{\star}$ and $f(\theta)<0$ for $\theta<\theta^{\star}$, as is the case in Figure 2.10. The Robbins-Monro procedure then defines a sequence of successive estimates of the root θ^{\star} given by

$$
\begin{equation*}
\theta^{(N)}=\theta^{(N-1)}+a_{N-1} z\left(\theta^{(N-1)}\right) \tag{2.129}
\end{equation*}
$$

where $z\left(\theta^{(N)}\right)$ is an observed value of z when θ takes the value $\theta^{(N)}$. The coefficients $\left\{a_{N}\right\}$ represent a sequence of positive numbers that satisfy the conditions

$$
\begin{align*}
\lim _{N \rightarrow \infty} a_{N} & =0 \tag{2.130}\\
\sum_{N=1}^{\infty} a_{N} & =\infty \tag{2.131}\\
\sum_{N=1}^{\infty} a_{N}^{2} & <\infty \tag{2.132}
\end{align*}
$$

It can then be shown (Robbins and Monro, 1951; Fukunaga, 1990) that the sequence of estimates given by (2.129) does indeed converge to the root with probability one. Note that the first condition (2.130) ensures that the successive corrections decrease in magnitude so that the process can converge to a limiting value. The second condition (2.131) is required to ensure that the algorithm does not converge short of the root, and the third condition (2.132) is needed to ensure that the accumulated noise has finite variance and hence does not spoil convergence.

Now let us consider how a general maximum likelihood problem can be solved sequentially using the Robbins-Monro algorithm. By definition, the maximum likelihood solution $\theta_{\text {ML }}$ is a stationary point of the log likelihood function and hence satisfies

$$
\begin{equation*}
\left.\frac{\partial}{\partial \theta}\left\{\frac{1}{N} \sum_{n=1}^{N} \ln p\left(\mathbf{x}_{n} \mid \theta\right)\right\}\right|_{\theta_{\mathrm{ML}}}=0 \tag{2.133}
\end{equation*}
$$

Exchanging the derivative and the summation, and taking the limit $N \rightarrow \infty$ we have

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \frac{\partial}{\partial \theta} \ln p\left(x_{n} \mid \theta\right)=\mathbb{E}_{x}\left[\frac{\partial}{\partial \theta} \ln p(x \mid \theta)\right] \tag{2.134}
\end{equation*}
$$

and so we see that finding the maximum likelihood solution corresponds to finding the root of a regression function. We can therefore apply the Robbins-Monro procedure, which now takes the form

$$
\begin{equation*}
\theta^{(N)}=\theta^{(N-1)}+a_{N-1} \frac{\partial}{\partial \theta^{(N-1)}} \ln p\left(x_{N} \mid \theta^{(N-1)}\right) \tag{2.135}
\end{equation*}
$$

Figure 2.11 In the case of a Gaussian distribution, with θ corresponding to the mean μ, the regression function illustrated in Figure 2.10 takes the form of a straight line, as shown in red. In this case, the random variable z corresponds to the derivative of the log likelihood function and is given by $\left(x-\mu_{\mathrm{ML}}\right) / \sigma^{2}$, and its expectation that defines the regression function is a straight line given by $\left(\mu-\mu_{\mathrm{ML}}\right) / \sigma^{2}$. The root of the regression function corresponds to the maximum likelihood estimator μ_{ML}.

As a specific example, we consider once again the sequential estimation of the mean of a Gaussian distribution, in which case the parameter $\theta^{(N)}$ is the estimate $\mu_{\mathrm{ML}}^{(N)}$ of the mean of the Gaussian, and the random variable z is given by

$$
\begin{equation*}
z=\frac{\partial}{\partial \mu_{\mathrm{ML}}} \ln p\left(x \mid \mu_{\mathrm{ML}}, \sigma^{2}\right)=\frac{1}{\sigma^{2}}\left(x-\mu_{\mathrm{ML}}\right) \tag{2.136}
\end{equation*}
$$

Thus the distribution of z is Gaussian with mean $\mu-\mu_{\mathrm{ML}}$, as illustrated in Figure 2.11. Substituting (2.136) into (2.135), we obtain the univariate form of (2.126), provided we choose the coefficients a_{N} to have the form $a_{N}=\sigma^{2} / N$. Note that although we have focussed on the case of a single variable, the same technique, together with the same restrictions (2.130)-(2.132) on the coefficients a_{N}, apply equally to the multivariate case (Blum, 1965).

2.3.6 Bayesian inference for the Gaussian

The maximum likelihood framework gave point estimates for the parameters $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$. Now we develop a Bayesian treatment by introducing prior distributions over these parameters. Let us begin with a simple example in which we consider a single Gaussian random variable x. We shall suppose that the variance σ^{2} is known, and we consider the task of inferring the mean μ given a set of N observations $\mathbf{X}=\left\{x_{1}, \ldots, x_{N}\right\}$. The likelihood function, that is the probability of the observed data given μ, viewed as a function of μ, is given by

$$
\begin{equation*}
p(\mathbf{X} \mid \mu)=\prod_{n=1}^{N} p\left(x_{n} \mid \mu\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{N / 2}} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}\right\} \tag{2.137}
\end{equation*}
$$

Again we emphasize that the likelihood function $p(\mathbf{X} \mid \mu)$ is not a probability distribution over μ and is not normalized.

We see that the likelihood function takes the form of the exponential of a quadratic form in μ. Thus if we choose a prior $p(\mu)$ given by a Gaussian, it will be a
conjugate distribution for this likelihood function because the corresponding posterior will be a product of two exponentials of quadratic functions of μ and hence will also be Gaussian. We therefore take our prior distribution to be

$$
\begin{equation*}
p(\mu)=\mathcal{N}\left(\mu \mid \mu_{0}, \sigma_{0}^{2}\right) \tag{2.138}
\end{equation*}
$$

and the posterior distribution is given by

$$
\begin{equation*}
p(\mu \mid \mathbf{X}) \propto p(\mathbf{X} \mid \mu) p(\mu) \tag{2.139}
\end{equation*}
$$

Simple manipulation involving completing the square in the exponent shows that the posterior distribution is given by

$$
\begin{equation*}
p(\mu \mid \mathbf{X})=\mathcal{N}\left(\mu \mid \mu_{N}, \sigma_{N}^{2}\right) \tag{2.140}
\end{equation*}
$$

where

$$
\begin{align*}
\mu_{N} & =\frac{\sigma^{2}}{N \sigma_{0}^{2}+\sigma^{2}} \mu_{0}+\frac{N \sigma_{0}^{2}}{N \sigma_{0}^{2}+\sigma^{2}} \mu_{\mathrm{ML}} \tag{2.141}\\
\frac{1}{\sigma_{N}^{2}} & =\frac{1}{\sigma_{0}^{2}}+\frac{N}{\sigma^{2}} \tag{2.142}
\end{align*}
$$

in which μ_{ML} is the maximum likelihood solution for μ given by the sample mean

$$
\begin{equation*}
\mu_{\mathrm{ML}}=\frac{1}{N} \sum_{n=1}^{N} x_{n} . \tag{2.143}
\end{equation*}
$$

It is worth spending a moment studying the form of the posterior mean and variance. First of all, we note that the mean of the posterior distribution given by (2.141) is a compromise between the prior mean μ_{0} and the maximum likelihood solution μ_{ML}. If the number of observed data points $N=0$, then (2.141) reduces to the prior mean as expected. For $N \rightarrow \infty$, the posterior mean is given by the maximum likelihood solution. Similarly, consider the result (2.142) for the variance of the posterior distribution. We see that this is most naturally expressed in terms of the inverse variance, which is called the precision. Furthermore, the precisions are additive, so that the precision of the posterior is given by the precision of the prior plus one contribution of the data precision from each of the observed data points. As we increase the number of observed data points, the precision steadily increases, corresponding to a posterior distribution with steadily decreasing variance. With no observed data points, we have the prior variance, whereas if the number of data points $N \rightarrow \infty$, the variance σ_{N}^{2} goes to zero and the posterior distribution becomes infinitely peaked around the maximum likelihood solution. We therefore see that the maximum likelihood result of a point estimate for μ given by (2.143) is recovered precisely from the Bayesian formalism in the limit of an infinite number of observations. Note also that for finite N, if we take the limit $\sigma_{0}^{2} \rightarrow \infty$ in which the prior has infinite variance then the posterior mean (2.141) reduces to the maximum likelihood result, while from (2.142) the posterior variance is given by $\sigma_{N}^{2}=\sigma^{2} / N$.

Figure 2.12 Illustration of Bayesian inference for

Exercise 2.40

Section 2.3.5
the mean μ of a Gaussian distribution, in which the variance is assumed to be known. The curves show the prior distribution over μ (the curve labelled $N=0$), which in this case is itself Gaussian, along with the posterior distribution given by (2.140) for increasing numbers N of data points. The data points are generated from a Gaussian of mean 0.8 and variance 0.1 , and the prior is chosen to have mean 0 . In both the prior and the likelihood function, the variance is set to the true value.

We illustrate our analysis of Bayesian inference for the mean of a Gaussian distribution in Figure 2.12. The generalization of this result to the case of a D dimensional Gaussian random variable \mathbf{x} with known covariance and unknown mean is straightforward.

We have already seen how the maximum likelihood expression for the mean of a Gaussian can be re-cast as a sequential update formula in which the mean after observing N data points was expressed in terms of the mean after observing $N-1$ data points together with the contribution from data point \mathbf{x}_{N}. In fact, the Bayesian paradigm leads very naturally to a sequential view of the inference problem. To see this in the context of the inference of the mean of a Gaussian, we write the posterior distribution with the contribution from the final data point \mathbf{x}_{N} separated out so that

$$
\begin{equation*}
p(\boldsymbol{\mu} \mid D) \propto\left[p(\boldsymbol{\mu}) \prod_{n=1}^{N-1} p\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}\right)\right] p\left(\mathbf{x}_{N} \mid \boldsymbol{\mu}\right) . \tag{2.144}
\end{equation*}
$$

The term in square brackets is (up to a normalization coefficient) just the posterior distribution after observing $N-1$ data points. We see that this can be viewed as a prior distribution, which is combined using Bayes' theorem with the likelihood function associated with data point \mathbf{x}_{N} to arrive at the posterior distribution after observing N data points. This sequential view of Bayesian inference is very general and applies to any problem in which the observed data are assumed to be independent and identically distributed.

So far, we have assumed that the variance of the Gaussian distribution over the data is known and our goal is to infer the mean. Now let us suppose that the mean is known and we wish to infer the variance. Again, our calculations will be greatly simplified if we choose a conjugate form for the prior distribution. It turns out to be most convenient to work with the precision $\lambda \equiv 1 / \sigma^{2}$. The likelihood function for λ takes the form

$$
\begin{equation*}
p(\mathbf{X} \mid \lambda)=\prod_{n=1}^{N} \mathcal{N}\left(x_{n} \mid \mu, \lambda^{-1}\right) \propto \lambda^{N / 2} \exp \left\{-\frac{\lambda}{2} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}\right\} \tag{2.145}
\end{equation*}
$$

Figure 2.13 Plot of the gamma distribution $\operatorname{Gam}(\lambda \mid a, b)$ defined by (2.146) for various values of the parameters a and b.

Exercise 2.41
Exercise 2.42

The corresponding conjugate prior should therefore be proportional to the product of a power of λ and the exponential of a linear function of λ. This corresponds to the gamma distribution which is defined by

$$
\begin{equation*}
\operatorname{Gam}(\lambda \mid a, b)=\frac{1}{\Gamma(a)} b^{a} \lambda^{a-1} \exp (-b \lambda) \tag{2.146}
\end{equation*}
$$

Here $\Gamma(a)$ is the gamma function that is defined by (1.141) and that ensures that (2.146) is correctly normalized. The gamma distribution has a finite integral if $a>0$, and the distribution itself is finite if $a \geqslant 1$. It is plotted, for various values of a and b, in Figure 2.13. The mean and variance of the gamma distribution are given by

$$
\begin{align*}
\mathbb{E}[\lambda] & =\frac{a}{b} \tag{2.147}\\
\operatorname{var}[\lambda] & =\frac{a}{b^{2}} \tag{2.148}
\end{align*}
$$

Consider a prior distribution $\operatorname{Gam}\left(\lambda \mid a_{0}, b_{0}\right)$. If we multiply by the likelihood function (2.145), then we obtain a posterior distribution

$$
\begin{equation*}
p(\lambda \mid \mathbf{X}) \propto \lambda^{a_{0}-1} \lambda^{N / 2} \exp \left\{-b_{0} \lambda-\frac{\lambda}{2} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}\right\} \tag{2.149}
\end{equation*}
$$

which we recognize as a gamma distribution of the form $\operatorname{Gam}\left(\lambda \mid a_{N}, b_{N}\right)$ where

$$
\begin{align*}
a_{N} & =a_{0}+\frac{N}{2} \tag{2.150}\\
b_{N} & =b_{0}+\frac{1}{2} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}=b_{0}+\frac{N}{2} \sigma_{\mathrm{ML}}^{2} \tag{2.151}
\end{align*}
$$

where σ_{ML}^{2} is the maximum likelihood estimator of the variance. Note that in (2.149) there is no need to keep track of the normalization constants in the prior and the likelihood function because, if required, the correct coefficient can be found at the end using the normalized form (2.146) for the gamma distribution.

From (2.150), we see that the effect of observing N data points is to increase the value of the coefficient a by $N / 2$. Thus we can interpret the parameter a_{0} in the prior in terms of $2 a_{0}$ 'effective' prior observations. Similarly, from (2.151) we see that the N data points contribute $N \sigma_{\mathrm{ML}}^{2} / 2$ to the parameter b, where σ_{ML}^{2} is the variance, and so we can interpret the parameter b_{0} in the prior as arising from the $2 a_{0}$ 'effective' prior observations having variance $2 b_{0} /\left(2 a_{0}\right)=b_{0} / a_{0}$. Recall that we made an analogous interpretation for the Dirichlet prior. These distributions are examples of the exponential family, and we shall see that the interpretation of a conjugate prior in terms of effective fictitious data points is a general one for the exponential family of distributions.

Instead of working with the precision, we can consider the variance itself. The conjugate prior in this case is called the inverse gamma distribution, although we shall not discuss this further because we will find it more convenient to work with the precision.

Now suppose that both the mean and the precision are unknown. To find a conjugate prior, we consider the dependence of the likelihood function on μ and λ

$$
\begin{align*}
& p(\mathbf{X} \mid \mu, \lambda)=\prod_{n=1}^{N}\left(\frac{\lambda}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{\lambda}{2}\left(x_{n}-\mu\right)^{2}\right\} \\
& \quad \propto\left[\lambda^{1 / 2} \exp \left(-\frac{\lambda \mu^{2}}{2}\right)\right]^{N} \exp \left\{\lambda \mu \sum_{n=1}^{N} x_{n}-\frac{\lambda}{2} \sum_{n=1}^{N} x_{n}^{2}\right\} \tag{2.152}
\end{align*}
$$

We now wish to identify a prior distribution $p(\mu, \lambda)$ that has the same functional dependence on μ and λ as the likelihood function and that should therefore take the form

$$
\begin{align*}
& p(\mu, \lambda) \propto\left[\lambda^{1 / 2} \exp \left(-\frac{\lambda \mu^{2}}{2}\right)\right]^{\beta} \exp \{c \lambda \mu-d \lambda\} \\
& \quad=\exp \left\{-\frac{\beta \lambda}{2}(\mu-c / \beta)^{2}\right\} \lambda^{\beta / 2} \exp \left\{-\left(d-\frac{c^{2}}{2 \beta}\right) \lambda\right\} \tag{2.153}
\end{align*}
$$

where c, d, and β are constants. Since we can always write $p(\mu, \lambda)=p(\mu \mid \lambda) p(\lambda)$, we can find $p(\mu \mid \lambda)$ and $p(\lambda)$ by inspection. In particular, we see that $p(\mu \mid \lambda)$ is a Gaussian whose precision is a linear function of λ and that $p(\lambda)$ is a gamma distribution, so that the normalized prior takes the form

$$
\begin{equation*}
p(\mu, \lambda)=\mathcal{N}\left(\mu \mid \mu_{0},(\beta \lambda)^{-1}\right) \operatorname{Gam}(\lambda \mid a, b) \tag{2.154}
\end{equation*}
$$

where we have defined new constants given by $\mu_{0}=c / \beta, a=1+\beta / 2, b=$ $d-c^{2} / 2 \beta$. The distribution (2.154) is called the normal-gamma or Gaussian-gamma distribution and is plotted in Figure 2.14. Note that this is not simply the product of an independent Gaussian prior over μ and a gamma prior over λ, because the precision of μ is a linear function of λ. Even if we chose a prior in which μ and λ were independent, the posterior distribution would exhibit a coupling between the precision of μ and the value of λ.

Figure 2.14 Contour plot of the normal-gamma distribution (2.154) for parameter values $\mu_{0}=0, \beta=2, a=5$ and $b=6$.

In the case of the multivariate Gaussian distribution $\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1}\right)$ for a D dimensional variable \mathbf{x}, the conjugate prior distribution for the mean $\boldsymbol{\mu}$, assuming the precision is known, is again a Gaussian. For known mean and unknown precision

Exercise 2.45

Section 2.3.6
Exercise 2.46 matrix $\boldsymbol{\Lambda}$, the conjugate prior is the Wishart distribution given by

$$
\begin{equation*}
\mathcal{W}(\boldsymbol{\Lambda} \mid \mathbf{W}, \nu)=B|\boldsymbol{\Lambda}|^{(\nu-D-1) / 2} \exp \left(-\frac{1}{2} \operatorname{Tr}\left(\mathbf{W}^{-1} \boldsymbol{\Lambda}\right)\right) \tag{2.155}
\end{equation*}
$$

where ν is called the number of degrees of freedom of the distribution, \mathbf{W} is a $D \times D$ scale matrix, and $\operatorname{Tr}(\cdot)$ denotes the trace. The normalization constant B is given by

$$
\begin{equation*}
B(\mathbf{W}, \nu)=|\mathbf{W}|^{-\nu / 2}\left(2^{\nu D / 2} \pi^{D(D-1) / 4} \prod_{i=1}^{D} \Gamma\left(\frac{\nu+1-i}{2}\right)\right)^{-1} \tag{2.156}
\end{equation*}
$$

Again, it is also possible to define a conjugate prior over the covariance matrix itself, rather than over the precision matrix, which leads to the inverse Wishart distribution, although we shall not discuss this further. If both the mean and the precision are unknown, then, following a similar line of reasoning to the univariate case, the conjugate prior is given by

$$
\begin{equation*}
p\left(\boldsymbol{\mu}, \boldsymbol{\Lambda} \mid \boldsymbol{\mu}_{0}, \beta, \mathbf{W}, \nu\right)=\mathcal{N}\left(\boldsymbol{\mu} \mid \boldsymbol{\mu}_{0},(\beta \boldsymbol{\Lambda})^{-1}\right) \mathcal{W}(\boldsymbol{\Lambda} \mid \mathbf{W}, \nu) \tag{2.157}
\end{equation*}
$$

which is known as the normal-Wishart or Gaussian-Wishart distribution.

2.3.7 Student's t-distribution

We have seen that the conjugate prior for the precision of a Gaussian is given by a gamma distribution. If we have a univariate Gaussian $\mathcal{N}\left(x \mid \mu, \tau^{-1}\right)$ together with a Gamma prior $\operatorname{Gam}(\tau \mid a, b)$ and we integrate out the precision, we obtain the marginal distribution of x in the form

Figure 2.15 Plot of Student's t-distribution (2.159) for $\mu=0$ and $\lambda=1$ for various values of ν. The limit $\nu \rightarrow \infty$ corresponds to a Gaussian distribution with mean μ and precision λ.

$$
\begin{align*}
p(x \mid \mu, a, b) & =\int_{0}^{\infty} \mathcal{N}\left(x \mid \mu, \tau^{-1}\right) \operatorname{Gam}(\tau \mid a, b) \mathrm{d} \tau \tag{2.158}\\
& =\int_{0}^{\infty} \frac{b^{a} e^{(-b \tau)} \tau^{a-1}}{\Gamma(a)}\left(\frac{\tau}{2 \pi}\right)^{1 / 2} \exp \left\{-\frac{\tau}{2}(x-\mu)^{2}\right\} \mathrm{d} \tau \\
& =\frac{b^{a}}{\Gamma(a)}\left(\frac{1}{2 \pi}\right)^{1 / 2}\left[b+\frac{(x-\mu)^{2}}{2}\right]^{-a-1 / 2} \Gamma(a+1 / 2)
\end{align*}
$$

where we have made the change of variable $z=\tau\left[b+(x-\mu)^{2} / 2\right]$. By convention we define new parameters given by $\nu=2 a$ and $\lambda=a / b$, in terms of which the distribution $p(x \mid \mu, a, b)$ takes the form

$$
\begin{equation*}
\operatorname{St}(x \mid \mu, \lambda, \nu)=\frac{\Gamma(\nu / 2+1 / 2)}{\Gamma(\nu / 2)}\left(\frac{\lambda}{\pi \nu}\right)^{1 / 2}\left[1+\frac{\lambda(x-\mu)^{2}}{\nu}\right]^{-\nu / 2-1 / 2} \tag{2.159}
\end{equation*}
$$

which is known as Student's t-distribution. The parameter λ is sometimes called the precision of the t -distribution, even though it is not in general equal to the inverse of the variance. The parameter ν is called the degrees of freedom, and its effect is illustrated in Figure 2.15. For the particular case of $\nu=1$, the t -distribution reduces to the Cauchy distribution, while in the limit $\nu \rightarrow \infty$ the t -distribution $\operatorname{St}(x \mid \mu, \lambda, \nu)$ becomes a Gaussian $\mathcal{N}\left(x \mid \mu, \lambda^{-1}\right)$ with mean μ and precision λ.

From (2.158), we see that Student's t-distribution is obtained by adding up an infinite number of Gaussian distributions having the same mean but different precisions. This can be interpreted as an infinite mixture of Gaussians (Gaussian mixtures will be discussed in detail in Section 2.3.9. The result is a distribution that in general has longer 'tails' than a Gaussian, as was seen in Figure 2.15. This gives the tdistribution an important property called robustness, which means that it is much less sensitive than the Gaussian to the presence of a few data points which are outliers. The robustness of the t-distribution is illustrated in Figure 2.16, which compares the maximum likelihood solutions for a Gaussian and at-distribution. Note that the maximum likelihood solution for the t-distribution can be found using the expectationmaximization (EM) algorithm. Here we see that the effect of a small number of

(a)

(b)

Figure 2.16 Illustration of the robustness of Student's t-distribution compared to a Gaussian. (a) Histogram distribution of 30 data points drawn from a Gaussian distribution, together with the maximum likelihood fit obtained from a t-distribution (red curve) and a Gaussian (green curve, largely hidden by the red curve). Because the t-distribution contains the Gaussian as a special case it gives almost the same solution as the Gaussian. (b) The same data set but with three additional outlying data points showing how the Gaussian (green curve) is strongly distorted by the outliers, whereas the t-distribution (red curve) is relatively unaffected.
outliers is much less significant for the t-distribution than for the Gaussian. Outliers can arise in practical applications either because the process that generates the data corresponds to a distribution having a heavy tail or simply through mislabelled data. Robustness is also an important property for regression problems. Unsurprisingly, the least squares approach to regression does not exhibit robustness, because it corresponds to maximum likelihood under a (conditional) Gaussian distribution. By basing a regression model on a heavy-tailed distribution such as a t-distribution, we obtain a more robust model.

If we go back to (2.158) and substitute the alternative parameters $\nu=2 a, \lambda=$ a / b, and $\eta=\tau b / a$, we see that the t -distribution can be written in the form

$$
\begin{equation*}
\operatorname{St}(x \mid \mu, \lambda, \nu)=\int_{0}^{\infty} \mathcal{N}\left(x \mid \mu,(\eta \lambda)^{-1}\right) \operatorname{Gam}(\eta \mid \nu / 2, \nu / 2) \mathrm{d} \eta \tag{2.160}
\end{equation*}
$$

We can then generalize this to a multivariate Gaussian $\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Lambda})$ to obtain the corresponding multivariate Student's t-distribution in the form

$$
\begin{equation*}
\operatorname{St}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Lambda}, \nu)=\int_{0}^{\infty} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu},(\eta \boldsymbol{\Lambda})^{-1}\right) \operatorname{Gam}(\eta \mid \nu / 2, \nu / 2) \mathrm{d} \eta \tag{2.161}
\end{equation*}
$$

Using the same technique as for the univariate case, we can evaluate this integral to

$$
\begin{equation*}
\operatorname{St}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Lambda}, \nu)=\frac{\Gamma(D / 2+\nu / 2)}{\Gamma(\nu / 2)} \frac{|\boldsymbol{\Lambda}|^{1 / 2}}{(\pi \nu)^{D / 2}}\left[1+\frac{\Delta^{2}}{\nu}\right]^{-D / 2-\nu / 2} \tag{2.162}
\end{equation*}
$$

where D is the dimensionality of \mathbf{x}, and Δ^{2} is the squared Mahalanobis distance defined by

$$
\begin{equation*}
\Delta^{2}=(\mathrm{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Lambda}(\mathrm{x}-\boldsymbol{\mu}) . \tag{2.163}
\end{equation*}
$$

This is the multivariate form of Student's t-distribution and satisfies the following properties

$$
\begin{align*}
\mathbb{E}[\mathbf{x}] & =\boldsymbol{\mu}, & & \text { if } \quad \nu>1 \tag{2.164}\\
\operatorname{cov}[\mathbf{x}] & =\frac{\nu}{(\nu-2)} \boldsymbol{\Lambda}^{-1}, & & \text { if } \quad \nu>2 \tag{2.165}\\
\operatorname{mode}[\mathbf{x}] & =\boldsymbol{\mu} & & \tag{2.166}
\end{align*}
$$

with corresponding results for the univariate case.

2.3.8 Periodic variables

Although Gaussian distributions are of great practical significance, both in their own right and as building blocks for more complex probabilistic models, there are situations in which they are inappropriate as density models for continuous variables. One important case, which arises in practical applications, is that of periodic variables.

An example of a periodic variable would be the wind direction at a particular geographical location. We might, for instance, measure values of wind direction on a number of days and wish to summarize this using a parametric distribution. Another example is calendar time, where we may be interested in modelling quantities that are believed to be periodic over 24 hours or over an annual cycle. Such quantities can conveniently be represented using an angular (polar) coordinate $0 \leqslant \theta<2 \pi$.

We might be tempted to treat periodic variables by choosing some direction as the origin and then applying a conventional distribution such as the Gaussian. Such an approach, however, would give results that were strongly dependent on the arbitrary choice of origin. Suppose, for instance, that we have two observations at $\theta_{1}=1^{\circ}$ and $\theta_{2}=359^{\circ}$, and we model them using a standard univariate Gaussian distribution. If we choose the origin at 0°, then the sample mean of this data set will be 180° with standard deviation 179°, whereas if we choose the origin at 180°, then the mean will be 0° and the standard deviation will be 1°. We clearly need to develop a special approach for the treatment of periodic variables.

Let us consider the problem of evaluating the mean of a set of observations $\mathcal{D}=\left\{\theta_{1}, \ldots, \theta_{N}\right\}$ of a periodic variable. From now on, we shall assume that θ is measured in radians. We have already seen that the simple average $\left(\theta_{1}+\cdots+\theta_{N}\right) / N$ will be strongly coordinate dependent. To find an invariant measure of the mean, we note that the observations can be viewed as points on the unit circle and can therefore be described instead by two-dimensional unit vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ where $\left\|\mathbf{x}_{n}\right\|=1$ for $n=1, \ldots, N$, as illustrated in Figure 2.17. We can average the vectors $\left\{\mathbf{x}_{n}\right\}$

2. PROBABILITY DISTRIBUTIONS

Figure 2.17 Illustration of the representation of values θ_{n} of a periodic variable as twodimensional vectors x_{n} living on the unit circle. Also shown is the average $\overline{\mathrm{x}}$ of those vectors.

instead to give

$$
\begin{equation*}
\overline{\mathbf{x}}=\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n} \tag{2.167}
\end{equation*}
$$

and then find the corresponding angle $\bar{\theta}$ of this average. Clearly, this definition will ensure that the location of the mean is independent of the origin of the angular coordinate. Note that $\overline{\mathbf{x}}$ will typically lie inside the unit circle. The Cartesian coordinates of the observations are given by $\mathbf{x}_{n}=\left(\cos \theta_{n}, \sin \theta_{n}\right)$, and we can write the Cartesian coordinates of the sample mean in the form $\overline{\mathbf{x}}=(\bar{r} \cos \bar{\theta}, \bar{r} \sin \bar{\theta})$. Substituting into (2.167) and equating the x_{1} and x_{2} components then gives

$$
\begin{equation*}
\bar{r} \cos \bar{\theta}=\frac{1}{N} \sum_{n=1}^{N} \cos \theta_{n}, \quad \bar{r} \sin \bar{\theta}=\frac{1}{N} \sum_{n=1}^{N} \sin \theta_{n} \tag{2.168}
\end{equation*}
$$

Taking the ratio, and using the identity $\tan \theta=\sin \theta / \cos \theta$, we can solve for $\bar{\theta}$ to give

$$
\begin{equation*}
\bar{\theta}=\tan ^{-1}\left\{\frac{\sum_{n} \sin \theta_{n}}{\sum_{n} \cos \theta_{n}}\right\} \tag{2.169}
\end{equation*}
$$

Shortly, we shall see how this result arises naturally as the maximum likelihood estimator for an appropriately defined distribution over a periodic variable.

We now consider a periodic generalization of the Gaussian called the von Mises distribution. Here we shall limit our attention to univariate distributions, although periodic distributions can also be found over hyperspheres of arbitrary dimension. For an extensive discussion of periodic distributions, see Mardia and Jupp (2000).

By convention, we will consider distributions $p(\theta)$ that have period 2π. Any probability density $p(\theta)$ defined over θ must not only be nonnegative and integrate

Figure 2.18 The von Mises distribution can be derived by considering a two-dimensional Gaussian of the form (2.173), whose density contours are shown in blue and conditioning on the unit circle shown in red.

to one, but it must also be periodic. Thus $p(\theta)$ must satisfy the three conditions

$$
\begin{align*}
p(\theta) & \geqslant 0 \tag{2.170}\\
\int_{0}^{2 \pi} p(\theta) \mathrm{d} \theta & =1 \tag{2.171}\\
p(\theta+2 \pi) & =p(\theta) \tag{2.172}
\end{align*}
$$

From (2.172), it follows that $p(\theta+M 2 \pi)=p(\theta)$ for any integer M.
We can easily obtain a Gaussian-like distribution that satisfies these three properties as follows. Consider a Gaussian distribution over two variables $\mathbf{x}=\left(x_{1}, x_{2}\right)$ having mean $\boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}\right)$ and a covariance matrix $\boldsymbol{\Sigma}=\sigma^{2} \mathbf{I}$ where \mathbf{I} is the 2×2 identity matrix, so that

$$
\begin{equation*}
p\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi \sigma^{2}} \exp \left\{-\frac{\left(x_{1}-\mu_{1}\right)^{2}+\left(x_{2}-\mu_{2}\right)^{2}}{2 \sigma^{2}}\right\} \tag{2.173}
\end{equation*}
$$

The contours of constant $p(\mathbf{x})$ are circles, as illustrated in Figure 2.18. Now suppose we consider the value of this distribution along a circle of fixed radius. Then by construction this distribution will be periodic, although it will not be normalized. We can determine the form of this distribution by transforming from Cartesian coordinates $\left(x_{1}, x_{2}\right)$ to polar coordinates (r, θ) so that

$$
\begin{equation*}
x_{1}=r \cos \theta, \quad x_{2}=r \sin \theta \tag{2.174}
\end{equation*}
$$

We also map the mean $\boldsymbol{\mu}$ into polar coordinates by writing

$$
\begin{equation*}
\mu_{1}=r_{0} \cos \theta_{0}, \quad \mu_{2}=r_{0} \sin \theta_{0} \tag{2.175}
\end{equation*}
$$

Next we substitute these transformations into the two-dimensional Gaussian distribution (2.173), and then condition on the unit circle $r=1$, noting that we are interested only in the dependence on θ. Focussing on the exponent in the Gaussian distribution we have

$$
\begin{align*}
- & \frac{1}{2 \sigma^{2}}\left\{\left(r \cos \theta-r_{0} \cos \theta_{0}\right)^{2}+\left(r \sin \theta-r_{0} \sin \theta_{0}\right)^{2}\right\} \\
& =-\frac{1}{2 \sigma^{2}}\left\{1+r_{0}^{2}-2 r_{0} \cos \theta \cos \theta_{0}-2 r_{0} \sin \theta \sin \theta_{0}\right\} \\
& =\frac{r_{0}}{\sigma^{2}} \cos \left(\theta-\theta_{0}\right)+\text { const } \tag{2.176}
\end{align*}
$$

Figure 2.19 The von Mises distribution plotted for two different parameter values, shown as a Cartesian plot on the left and as the corresponding polar plot on the right.
where 'const' denotes terms independent of θ, and we have made use of the following

Exercise 2.51 trigonometrical identities

$$
\begin{align*}
\cos ^{2} A+\sin ^{2} A & =1 \tag{2.177}\\
\cos A \cos B+\sin A \sin B & =\cos (A-B) \tag{2.178}
\end{align*}
$$

If we now define $m=r_{0} / \sigma^{2}$, we obtain our final expression for the distribution of $p(\theta)$ along the unit circle $r=1$ in the form

$$
\begin{equation*}
p\left(\theta \mid \theta_{0}, m\right)=\frac{1}{2 \pi I_{0}(m)} \exp \left\{m \cos \left(\theta-\theta_{0}\right)\right\} \tag{2.179}
\end{equation*}
$$

which is called the von Mises distribution, or the circular normal. Here the parameter θ_{0} corresponds to the mean of the distribution, while m, which is known as the concentration parameter, is analogous to the inverse variance (precision) for the Gaussian. The normalization coefficient in (2.179) is expressed in terms of $I_{0}(\mathrm{~m})$, which is the zeroth-order Bessel function of the first kind (Abramowitz and Stegun, 1965) and is defined by

$$
\begin{equation*}
I_{0}(m)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \exp \{m \cos \theta\} \mathrm{d} \theta \tag{2.180}
\end{equation*}
$$

Exercise 2.52
For large m, the distribution becomes approximately Gaussian. The von Mises dis- tribution is plotted in Figure 2.19, and the function $I_{0}(m)$ is plotted in Figure 2.20.

Now consider the maximum likelihood estimators for the parameters θ_{0} and m for the von Mises distribution. The log likelihood function is given by

$$
\begin{equation*}
\ln p\left(\mathcal{D} \mid \theta_{0}, m\right)=-N \ln (2 \pi)-N \ln I_{0}(m)+m \sum_{n=1}^{N} \cos \left(\theta_{n}-\theta_{0}\right) \tag{2.181}
\end{equation*}
$$

Figure 2.20 Plot of the Bessel function $I_{0}(m)$ defined by (2.180), together with the function $A(m)$ defined by (2.186).

Setting the derivative with respect to θ_{0} equal to zero gives

$$
\begin{equation*}
\sum_{n=1}^{N} \sin \left(\theta_{n}-\theta_{0}\right)=0 \tag{2.182}
\end{equation*}
$$

To solve for θ_{0}, we make use of the trigonometric identity

$$
\begin{equation*}
\sin (A-B)=\cos B \sin A-\cos A \sin B \tag{2.183}
\end{equation*}
$$

Exercise 2.53 from which we obtain

$$
\begin{equation*}
\theta_{0}^{\mathrm{ML}}=\tan ^{-1}\left\{\frac{\sum_{n} \sin \theta_{n}}{\sum_{n} \cos \theta_{n}}\right\} \tag{2.184}
\end{equation*}
$$

which we recognize as the result (2.169) obtained earlier for the mean of the observations viewed in a two-dimensional Cartesian space.

Similarly, maximizing (2.181) with respect to m, and making use of $I_{0}^{\prime}(m)=$ $I_{1}(m)$ (Abramowitz and Stegun, 1965), we have

$$
\begin{equation*}
A(m)=\frac{1}{N} \sum_{n=1}^{N} \cos \left(\theta_{n}-\theta_{0}^{\mathrm{ML}}\right) \tag{2.185}
\end{equation*}
$$

where we have substituted for the maximum likelihood solution for θ_{0}^{ML} (recalling that we are performing a joint optimization over θ and m), and we have defined

$$
\begin{equation*}
A(m)=\frac{I_{1}(m)}{I_{0}(m)} \tag{2.186}
\end{equation*}
$$

The function $A(m)$ is plotted in Figure 2.20. Making use of the trigonometric identity (2.178), we can write (2.185) in the form

$$
\begin{equation*}
A\left(m_{\mathrm{ML}}\right)=\left(\frac{1}{N} \sum_{n=1}^{N} \cos \theta_{n}\right) \cos \theta_{0}^{\mathrm{ML}}-\left(\frac{1}{N} \sum_{n=1}^{N} \sin \theta_{n}\right) \sin \theta_{0}^{\mathrm{ML}} \tag{2.187}
\end{equation*}
$$

Figure 2.21 Plots of the 'old faithful' data in which the blue curves show contours of constant probability density. On the left is a single Gaussian distribution which has been fitted to the data using maximum likelihood. Note that this distribution fails to capture the two clumps in the data and indeed places much of its probability mass in the central region between the clumps where the data are relatively sparse. On the right the distribution is given by a linear combination of two Gaussians which has been fitted to the data by maximum likelihood using techniques discussed Chapter 9, and which gives a better representation of the data.

The right-hand side of (2.187) is easily evaluated, and the function $A(m)$ can be inverted numerically.

For completeness, we mention briefly some alternative techniques for the construction of periodic distributions. The simplest approach is to use a histogram of observations in which the angular coordinate is divided into fixed bins. This has the virtue of simplicity and flexibility but also suffers from significant limitations, as we shall see when we discuss histogram methods in more detail in Section 2.5. Another approach starts, like the von Mises distribution, from a Gaussian distribution over a Euclidean space but now marginalizes onto the unit circle rather than conditioning (Mardia and Jupp, 2000). However, this leads to more complex forms of distribution and will not be discussed further. Finally, any valid distribution over the real axis (such as a Gaussian) can be turned into a periodic distribution by mapping successive intervals of width 2π onto the periodic variable $(0,2 \pi)$, which corresponds to 'wrapping' the real axis around unit circle. Again, the resulting distribution is more complex to handle than the von Mises distribution.

One limitation of the von Mises distribution is that it is unimodal. By forming mixtures of von Mises distributions, we obtain a flexible framework for modelling periodic variables that can handle multimodality. For an example of a machine learning application that makes use of von Mises distributions, see Lawrence et al. (2002), and for extensions to modelling conditional densities for regression problems, see Bishop and Nabney (1996).

2.3.9 Mixtures of Gaussians

While the Gaussian distribution has some important analytical properties, it suffers from significant limitations when it comes to modelling real data sets. Consider the example shown in Figure 2.21. This is known as the 'Old Faithful' data set, and comprises 272 measurements of the eruption of the Old Faithful geyser at Yel-

Appendix A

 lowstone National Park in the USA. Each measurement comprises the duration ofFigure 2.22 Example of a Gaussian mixture distribution in one dimension showing three Gaussians (each scaled by a coefficient) in blue and their sum in red.

the eruption in minutes (horizontal axis) and the time in minutes to the next eruption (vertical axis). We see that the data set forms two dominant clumps, and that a simple Gaussian distribution is unable to capture this structure, whereas a linear superposition of two Gaussians gives a better characterization of the data set.

Such superpositions, formed by taking linear combinations of more basic distributions such as Gaussians, can be formulated as probabilistic models known as mixture distributions (McLachlan and Basford, 1988; McLachlan and Peel, 2000). In Figure 2.22 we see that a linear combination of Gaussians can give rise to very complex densities. By using a sufficient number of Gaussians, and by adjusting their means and covariances as well as the coefficients in the linear combination, almost any continuous density can be approximated to arbitrary accuracy.

We therefore consider a superposition of K Gaussian densities of the form

$$
\begin{equation*}
p(\mathbf{x})=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right) \tag{2.188}
\end{equation*}
$$

which is called a mixture of Gaussians. Each Gaussian density $\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)$ is called a component of the mixture and has its own mean $\boldsymbol{\mu}_{k}$ and covariance $\boldsymbol{\Sigma}_{k}$. Contour and surface plots for a Gaussian mixture having 3 components are shown in Figure 2.23.

In this section we shall consider Gaussian components to illustrate the framework of mixture models. More generally, mixture models can comprise linear combinations of other distributions. For instance, in Section 9.3.3 we shall consider mixtures of Bernoulli distributions as an example of a mixture model for discrete variables.

The parameters π_{k} in (2.188) are called mixing coefficients. If we integrate both sides of (2.188) with respect to \mathbf{x}, and note that both $p(\mathbf{x})$ and the individual Gaussian components are normalized, we obtain

$$
\begin{equation*}
\sum_{k=1}^{K} \pi_{k}=1 \tag{2.189}
\end{equation*}
$$

Also, the requirement that $p(\mathbf{x}) \geqslant 0$, together with $\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right) \geqslant 0$, implies $\pi_{k} \geqslant 0$ for all k. Combining this with the condition (2.189) we obtain

$$
\begin{equation*}
0 \leqslant \pi_{k} \leqslant 1 \tag{2.190}
\end{equation*}
$$

Figure 2.23 Illustration of a mixture of 3 Gaussians in a two-dimensional space. (a) Contours of constant density for each of the mixture components, in which the 3 components are denoted red, blue and green, and the values of the mixing coefficients are shown below each component. (b) Contours of the marginal probability density $p(\mathbf{x})$ of the mixture distribution. (c) A surface plot of the distribution $p(\mathbf{x})$.

We therefore see that the mixing coefficients satisfy the requirements to be probabilities.

From the sum and product rules, the marginal density is given by

$$
\begin{equation*}
p(\mathbf{x})=\sum_{k=1}^{K} p(k) p(\mathbf{x} \mid k) \tag{2.191}
\end{equation*}
$$

which is equivalent to (2.188) in which we can view $\pi_{k}=p(k)$ as the prior probability of picking the $k^{\text {th }}$ component, and the density $\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)=p(\mathbf{x} \mid k)$ as the probability of \mathbf{x} conditioned on k. As we shall see in later chapters, an important role is played by the posterior probabilities $p(k \mid \mathbf{x})$, which are also known as responsibilities. From Bayes' theorem these are given by

$$
\begin{align*}
\gamma_{k}(\mathbf{x}) & \equiv p(k \mid \mathbf{x}) \\
& =\frac{p(k) p(\mathbf{x} \mid k)}{\sum_{l} p(l) p(\mathbf{x} \mid l)} \\
& =\frac{\pi_{k} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)}{\sum_{l} \pi_{l} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{l}, \boldsymbol{\Sigma}_{l}\right)} \tag{2.192}
\end{align*}
$$

We shall discuss the probabilistic interpretation of the mixture distribution in greater detail in Chapter 9.

The form of the Gaussian mixture distribution is governed by the parameters $\boldsymbol{\pi}$, $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$, where we have used the notation $\boldsymbol{\pi} \equiv\left\{\pi_{1}, \ldots, \pi_{K}\right\}, \boldsymbol{\mu} \equiv\left\{\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K}\right\}$ and $\boldsymbol{\Sigma} \equiv\left\{\boldsymbol{\Sigma}_{1}, \ldots \boldsymbol{\Sigma}_{K}\right\}$. One way to set the values of these parameters is to use maximum likelihood. From (2.188) the log of the likelihood function is given by

$$
\begin{equation*}
\ln p(\mathbf{X} \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})=\sum_{n=1}^{N} \ln \left\{\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right\} \tag{2.193}
\end{equation*}
$$

where $\mathbf{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$. We immediately see that the situation is now much more complex than with a single Gaussian, due to the presence of the summation over k inside the logarithm. As a result, the maximum likelihood solution for the parameters no longer has a closed-form analytical solution. One approach to maximizing the likelihood function is to use iterative numerical optimization techniques (Fletcher, 1987; Nocedal and Wright, 1999; Bishop and Nabney, 2008). Alternatively we can employ a powerful framework called expectation maximization, which will be discussed at length in Chapter 9.

2.4. The Exponential Family

The probability distributions that we have studied so far in this chapter (with the exception of the Gaussian mixture) are specific examples of a broad class of distributions called the exponential family (Duda and Hart, 1973; Bernardo and Smith, 1994). Members of the exponential family have many important properties in common, and it is illuminating to discuss these properties in some generality.

The exponential family of distributions over \mathbf{x}, given parameters $\boldsymbol{\eta}$, is defined to be the set of distributions of the form

$$
\begin{equation*}
p(\mathbf{x} \mid \boldsymbol{\eta})=h(\mathbf{x}) g(\boldsymbol{\eta}) \exp \left\{\boldsymbol{\eta}^{\mathrm{T}} \mathbf{u}(\mathbf{x})\right\} \tag{2.194}
\end{equation*}
$$

where x may be scalar or vector, and may be discrete or continuous. Here $\boldsymbol{\eta}$ are called the natural parameters of the distribution, and $\mathbf{u}(\mathbf{x})$ is some function of \mathbf{x}. The function $g(\boldsymbol{\eta})$ can be interpreted as the coefficient that ensures that the distribution is normalized and therefore satisfies

$$
\begin{equation*}
g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp \left\{\boldsymbol{\eta}^{\mathrm{T}} \mathbf{u}(\mathbf{x})\right\} \mathrm{d} \mathbf{x}=1 \tag{2.195}
\end{equation*}
$$

where the integration is replaced by summation if \mathbf{x} is a discrete variable.
We begin by taking some examples of the distributions introduced earlier in the chapter and showing that they are indeed members of the exponential family. Consider first the Bernoulli distribution

$$
\begin{equation*}
p(x \mid \mu)=\operatorname{Bern}(x \mid \mu)=\mu^{x}(1-\mu)^{1-x} \tag{2.196}
\end{equation*}
$$

Expressing the right-hand side as the exponential of the logarithm, we have

$$
\begin{align*}
p(x \mid \mu) & =\exp \{x \ln \mu+(1-x) \ln (1-\mu)\} \\
& =(1-\mu) \exp \left\{\ln \left(\frac{\mu}{1-\mu}\right) x\right\} \tag{2.197}
\end{align*}
$$

Comparison with (2.194) allows us to identify

$$
\begin{equation*}
\eta=\ln \left(\frac{\mu}{1-\mu}\right) \tag{2.198}
\end{equation*}
$$

