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Figure 2.5 Plots of the Dirichlet distribution over three variables, where the two horizontal axes are coordinates
in the plane of the simplex and the vertical axis corresponds to the value of the density. Here {αk} = 0.1 on the
left plot, {αk} = 1 in the centre plot, and {αk} = 10 in the right plot.

modelled using the binomial distribution (2.9) or as 1-of-2 variables and modelled
using the multinomial distribution (2.34) with K = 2.

2.3. The Gaussian Distribution

The Gaussian, also known as the normal distribution, is a widely used model for the
distribution of continuous variables. In the case of a single variable x, the Gaussian
distribution can be written in the form

N (x|µ, σ2) =
1

(2πσ2)1/2
exp

{
− 1

2σ2
(x − µ)2

}
(2.42)

where µ is the mean and σ2 is the variance. For a D-dimensional vector x, the
multivariate Gaussian distribution takes the form

N (x|µ,Σ) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x− µ)TΣ−1(x− µ)

}
(2.43)

where µ is a D-dimensional mean vector, Σ is a D × D covariance matrix, and |Σ|
denotes the determinant of Σ.

The Gaussian distribution arises in many different contexts and can be motivated
from a variety of different perspectives. For example, we have already seen that forSection 1.6
a single real variable, the distribution that maximizes the entropy is the Gaussian.
This property applies also to the multivariate Gaussian.Exercise 2.14

Another situation in which the Gaussian distribution arises is when we consider
the sum of multiple random variables. The central limit theorem (due to Laplace)
tells us that, subject to certain mild conditions, the sum of a set of random variables,
which is of course itself a random variable, has a distribution that becomes increas-
ingly Gaussian as the number of terms in the sum increases (Walker, 1969). We can
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Figure 2.6 Histogram plots of the mean of N uniformly distributed numbers for various values of N . We
observe that as N increases, the distribution tends towards a Gaussian.

illustrate this by considering N variables x1, . . . , xN each of which has a uniform
distribution over the interval [0, 1] and then considering the distribution of the mean
(x1 + · · ·+ xN )/N . For large N , this distribution tends to a Gaussian, as illustrated
in Figure 2.6. In practice, the convergence to a Gaussian as N increases can be
very rapid. One consequence of this result is that the binomial distribution (2.9),
which is a distribution over m defined by the sum of N observations of the random
binary variable x, will tend to a Gaussian as N → ∞ (see Figure 2.1 for the case of
N = 10).

The Gaussian distribution has many important analytical properties, and we shall
consider several of these in detail. As a result, this section will be rather more tech-
nically involved than some of the earlier sections, and will require familiarity with
various matrix identities. However, we strongly encourage the reader to become pro-Appendix C
ficient in manipulating Gaussian distributions using the techniques presented here as
this will prove invaluable in understanding the more complex models presented in
later chapters.

We begin by considering the geometrical form of the Gaussian distribution. The

Carl Friedrich Gauss
1777–1855

It is said that when Gauss went
to elementary school at age 7, his
teacher Büttner, trying to keep the
class occupied, asked the pupils to
sum the integers from 1 to 100. To
the teacher’s amazement, Gauss

arrived at the answer in a matter of moments by noting
that the sum can be represented as 50 pairs (1 + 100,
2+99, etc.) each of which added to 101, giving the an-
swer 5,050. It is now believed that the problem which
was actually set was of the same form but somewhat
harder in that the sequence had a larger starting value
and a larger increment. Gauss was a German math-

ematician and scientist with a reputation for being a
hard-working perfectionist. One of his many contribu-
tions was to show that least squares can be derived
under the assumption of normally distributed errors.
He also created an early formulation of non-Euclidean
geometry (a self-consistent geometrical theory that vi-
olates the axioms of Euclid) but was reluctant to dis-
cuss it openly for fear that his reputation might suffer
if it were seen that he believed in such a geometry.
At one point, Gauss was asked to conduct a geodetic
survey of the state of Hanover, which led to his for-
mulation of the normal distribution, now also known
as the Gaussian. After his death, a study of his di-
aries revealed that he had discovered several impor-
tant mathematical results years or even decades be-
fore they were published by others.
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functional dependence of the Gaussian on x is through the quadratic form

∆2 = (x − µ)TΣ−1(x − µ) (2.44)

which appears in the exponent. The quantity ∆ is called the Mahalanobis distance
from µ to x and reduces to the Euclidean distance when Σ is the identity matrix. The
Gaussian distribution will be constant on surfaces in x-space for which this quadratic
form is constant.

First of all, we note that the matrix Σ can be taken to be symmetric, without
loss of generality, because any antisymmetric component would disappear from the
exponent. Now consider the eigenvector equation for the covariance matrixExercise 2.17

Σui = λiui (2.45)

where i = 1, . . . , D. Because Σ is a real, symmetric matrix its eigenvalues will be
real, and its eigenvectors can be chosen to form an orthonormal set, so thatExercise 2.18

uT
i uj = Iij (2.46)

where Iij is the i, j element of the identity matrix and satisfies

Iij =
{

1, if i = j
0, otherwise. (2.47)

The covariance matrix Σ can be expressed as an expansion in terms of its eigenvec-
tors in the formExercise 2.19

Σ =
D∑

i=1

λiuiuT
i (2.48)

and similarly the inverse covariance matrix Σ−1 can be expressed as

Σ−1 =
D∑

i=1

1
λi

uiuT
i . (2.49)

Substituting (2.49) into (2.44), the quadratic form becomes

∆2 =
D∑

i=1

y2
i

λi
(2.50)

where we have defined
yi = uT

i (x − µ). (2.51)

We can interpret {yi} as a new coordinate system defined by the orthonormal vectors
ui that are shifted and rotated with respect to the original xi coordinates. Forming
the vector y = (y1, . . . , yD)T, we have

y = U(x − µ) (2.52)
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Figure 2.7 The red curve shows the ellip-
tical surface of constant proba-
bility density for a Gaussian in
a two-dimensional space x =
(x1, x2) on which the density
is exp(−1/2) of its value at
x = µ. The major axes of
the ellipse are defined by the
eigenvectors ui of the covari-
ance matrix, with correspond-
ing eigenvalues λi.
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where U is a matrix whose rows are given by uT
i . From (2.46) it follows that U is

an orthogonal matrix, i.e., it satisfies UUT = I, and hence also UTU = I, where IAppendix C
is the identity matrix.

The quadratic form, and hence the Gaussian density, will be constant on surfaces
for which (2.51) is constant. If all of the eigenvalues λi are positive, then these
surfaces represent ellipsoids, with their centres at µ and their axes oriented along ui,
and with scaling factors in the directions of the axes given by λ

1/2
i , as illustrated in

Figure 2.7.
For the Gaussian distribution to be well defined, it is necessary for all of the

eigenvalues λi of the covariance matrix to be strictly positive, otherwise the dis-
tribution cannot be properly normalized. A matrix whose eigenvalues are strictly
positive is said to be positive definite. In Chapter 12, we will encounter Gaussian
distributions for which one or more of the eigenvalues are zero, in which case the
distribution is singular and is confined to a subspace of lower dimensionality. If all
of the eigenvalues are nonnegative, then the covariance matrix is said to be positive
semidefinite.

Now consider the form of the Gaussian distribution in the new coordinate system
defined by the yi. In going from the x to the y coordinate system, we have a Jacobian
matrix J with elements given by

Jij =
∂xi

∂yj
= Uji (2.53)

where Uji are the elements of the matrix UT. Using the orthonormality property of
the matrix U, we see that the square of the determinant of the Jacobian matrix is

|J|2 =
∣∣UT

∣∣2 =
∣∣UT

∣∣ |U| =
∣∣UTU

∣∣ = |I| = 1 (2.54)

and hence |J| = 1. Also, the determinant |Σ| of the covariance matrix can be written
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as the product of its eigenvalues, and hence

|Σ|1/2 =
D∏

j=1

λ
1/2
j . (2.55)

Thus in the yj coordinate system, the Gaussian distribution takes the form

p(y) = p(x)|J| =
D∏

j=1

1
(2πλj)1/2

exp
{
− y2

j

2λj

}
(2.56)

which is the product of D independent univariate Gaussian distributions. The eigen-
vectors therefore define a new set of shifted and rotated coordinates with respect
to which the joint probability distribution factorizes into a product of independent
distributions. The integral of the distribution in the y coordinate system is then∫

p(y) dy =
D∏

j=1

∫ ∞

−∞

1
(2πλj)1/2

exp
{
− y2

j

2λj

}
dyj = 1 (2.57)

where we have used the result (1.48) for the normalization of the univariate Gaussian.
This confirms that the multivariate Gaussian (2.43) is indeed normalized.

We now look at the moments of the Gaussian distribution and thereby provide an
interpretation of the parameters µ and Σ. The expectation of x under the Gaussian
distribution is given by

E[x] =
1

(2π)D/2

1
|Σ|1/2

∫
exp

{
−1

2
(x − µ)TΣ−1(x − µ)

}
xdx

=
1

(2π)D/2

1
|Σ|1/2

∫
exp

{
−1

2
zTΣ−1z

}
(z + µ) dz (2.58)

where we have changed variables using z = x − µ. We now note that the exponent
is an even function of the components of z and, because the integrals over these are
taken over the range (−∞,∞), the term in z in the factor (z + µ) will vanish by
symmetry. Thus

E[x] = µ (2.59)

and so we refer to µ as the mean of the Gaussian distribution.
We now consider second order moments of the Gaussian. In the univariate case,

we considered the second order moment given by E[x2]. For the multivariate Gaus-
sian, there are D2 second order moments given by E[xixj ], which we can group
together to form the matrix E[xxT]. This matrix can be written as

E[xxT] =
1

(2π)D/2

1
|Σ|1/2

∫
exp

{
−1

2
(x − µ)TΣ−1(x − µ)

}
xxT dx

=
1

(2π)D/2

1
|Σ|1/2

∫
exp

{
−1

2
zTΣ−1z

}
(z + µ)(z + µ)T dz
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where again we have changed variables using z = x − µ. Note that the cross-terms
involving µzT and µTz will again vanish by symmetry. The term µµT is constant
and can be taken outside the integral, which itself is unity because the Gaussian
distribution is normalized. Consider the term involving zzT. Again, we can make
use of the eigenvector expansion of the covariance matrix given by (2.45), together
with the completeness of the set of eigenvectors, to write

z =
D∑

j=1

yjuj (2.60)

where yj = uT
j z, which gives

1
(2π)D/2

1
|Σ|1/2

∫
exp

{
−1

2
zTΣ−1z

}
zzT dz

=
1

(2π)D/2

1
|Σ|1/2

D∑
i=1

D∑
j=1

uiuT
j

∫
exp

{
−

D∑
k=1

y2
k

2λk

}
yiyj dy

=
D∑

i=1

uiuT
i λi = Σ (2.61)

where we have made use of the eigenvector equation (2.45), together with the fact
that the integral on the right-hand side of the middle line vanishes by symmetry
unless i = j, and in the final line we have made use of the results (1.50) and (2.55),
together with (2.48). Thus we have

E[xxT] = µµT + Σ. (2.62)

For single random variables, we subtracted the mean before taking second mo-
ments in order to define a variance. Similarly, in the multivariate case it is again
convenient to subtract off the mean, giving rise to the covariance of a random vector
x defined by

cov[x] = E
[
(x − E[x])(x − E[x])T

]
. (2.63)

For the specific case of a Gaussian distribution, we can make use of E[x] = µ,
together with the result (2.62), to give

cov[x] = Σ. (2.64)

Because the parameter matrix Σ governs the covariance of x under the Gaussian
distribution, it is called the covariance matrix.

Although the Gaussian distribution (2.43) is widely used as a density model, it
suffers from some significant limitations. Consider the number of free parameters in
the distribution. A general symmetric covariance matrix Σ will have D(D + 1)/2
independent parameters, and there are another D independent parameters in µ, giv-Exercise 2.21
ing D(D + 3)/2 parameters in total. For large D, the total number of parameters
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Figure 2.8 Contours of constant
probability density for a Gaussian
distribution in two dimensions in
which the covariance matrix is (a) of
general form, (b) diagonal, in which
the elliptical contours are aligned
with the coordinate axes, and (c)
proportional to the identity matrix, in
which the contours are concentric
circles.
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therefore grows quadratically with D, and the computational task of manipulating
and inverting large matrices can become prohibitive. One way to address this prob-
lem is to use restricted forms of the covariance matrix. If we consider covariance
matrices that are diagonal, so that Σ = diag(σ2

i ), we then have a total of 2D inde-
pendent parameters in the density model. The corresponding contours of constant
density are given by axis-aligned ellipsoids. We could further restrict the covariance
matrix to be proportional to the identity matrix, Σ = σ2I, known as an isotropic co-
variance, giving D + 1 independent parameters in the model and spherical surfaces
of constant density. The three possibilities of general, diagonal, and isotropic covari-
ance matrices are illustrated in Figure 2.8. Unfortunately, whereas such approaches
limit the number of degrees of freedom in the distribution and make inversion of the
covariance matrix a much faster operation, they also greatly restrict the form of the
probability density and limit its ability to capture interesting correlations in the data.

A further limitation of the Gaussian distribution is that it is intrinsically uni-
modal (i.e., has a single maximum) and so is unable to provide a good approximation
to multimodal distributions. Thus the Gaussian distribution can be both too flexible,
in the sense of having too many parameters, while also being too limited in the range
of distributions that it can adequately represent. We will see later that the introduc-
tion of latent variables, also called hidden variables or unobserved variables, allows
both of these problems to be addressed. In particular, a rich family of multimodal
distributions is obtained by introducing discrete latent variables leading to mixtures
of Gaussians, as discussed in Section 2.3.9. Similarly, the introduction of continuous
latent variables, as described in Chapter 12, leads to models in which the number of
free parameters can be controlled independently of the dimensionality D of the data
space while still allowing the model to capture the dominant correlations in the data
set. Indeed, these two approaches can be combined and further extended to derive
a very rich set of hierarchical models that can be adapted to a broad range of prac-
tical applications. For instance, the Gaussian version of the Markov random field,Section 8.3
which is widely used as a probabilistic model of images, is a Gaussian distribution
over the joint space of pixel intensities but rendered tractable through the imposition
of considerable structure reflecting the spatial organization of the pixels. Similarly,
the linear dynamical system, used to model time series data for applications suchSection 13.3
as tracking, is also a joint Gaussian distribution over a potentially large number of
observed and latent variables and again is tractable due to the structure imposed on
the distribution. A powerful framework for expressing the form and properties of
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such complex distributions is that of probabilistic graphical models, which will form
the subject of Chapter 8.

2.3.1 Conditional Gaussian distributions
An important property of the multivariate Gaussian distribution is that if two

sets of variables are jointly Gaussian, then the conditional distribution of one set
conditioned on the other is again Gaussian. Similarly, the marginal distribution of
either set is also Gaussian.

Consider first the case of conditional distributions. Suppose x is a D-dimensional
vector with Gaussian distribution N (x|µ,Σ) and that we partition x into two dis-
joint subsets xa and xb. Without loss of generality, we can take xa to form the first
M components of x, with xb comprising the remaining D−M components, so that

x =
(

xa

xb

)
. (2.65)

We also define corresponding partitions of the mean vector µ given by

µ =
(

µa

µb

)
(2.66)

and of the covariance matrix Σ given by

Σ =
(

Σaa Σab

Σba Σbb

)
. (2.67)

Note that the symmetry ΣT = Σ of the covariance matrix implies that Σaa and Σbb

are symmetric, while Σba = ΣT
ab.

In many situations, it will be convenient to work with the inverse of the covari-
ance matrix

Λ ≡ Σ−1 (2.68)

which is known as the precision matrix. In fact, we shall see that some properties
of Gaussian distributions are most naturally expressed in terms of the covariance,
whereas others take a simpler form when viewed in terms of the precision. We
therefore also introduce the partitioned form of the precision matrix

Λ =
(

Λaa Λab

Λba Λbb

)
(2.69)

corresponding to the partitioning (2.65) of the vector x. Because the inverse of a
symmetric matrix is also symmetric, we see that Λaa and Λbb are symmetric, whileExercise 2.22
ΛT

ab = Λba. It should be stressed at this point that, for instance, Λaa is not simply
given by the inverse of Σaa. In fact, we shall shortly examine the relation between
the inverse of a partitioned matrix and the inverses of its partitions.

Let us begin by finding an expression for the conditional distribution p(xa|xb).
From the product rule of probability, we see that this conditional distribution can be
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evaluated from the joint distribution p(x) = p(xa,xb) simply by fixing xb to the
observed value and normalizing the resulting expression to obtain a valid probability
distribution over xa. Instead of performing this normalization explicitly, we can
obtain the solution more efficiently by considering the quadratic form in the exponent
of the Gaussian distribution given by (2.44) and then reinstating the normalization
coefficient at the end of the calculation. If we make use of the partitioning (2.65),
(2.66), and (2.69), we obtain

−1
2
(x − µ)TΣ−1(x − µ) =

−1
2
(xa − µa)TΛaa(xa − µa) − 1

2
(xa − µa)TΛab(xb − µb)

−1
2
(xb − µb)

TΛba(xa − µa) − 1
2
(xb − µb)

TΛbb(xb − µb). (2.70)

We see that as a function of xa, this is again a quadratic form, and hence the cor-
responding conditional distribution p(xa|xb) will be Gaussian. Because this distri-
bution is completely characterized by its mean and its covariance, our goal will be
to identify expressions for the mean and covariance of p(xa|xb) by inspection of
(2.70).

This is an example of a rather common operation associated with Gaussian
distributions, sometimes called ‘completing the square’, in which we are given a
quadratic form defining the exponent terms in a Gaussian distribution, and we need
to determine the corresponding mean and covariance. Such problems can be solved
straightforwardly by noting that the exponent in a general Gaussian distribution
N (x|µ,Σ) can be written

−1
2
(x − µ)TΣ−1(x − µ) = −1

2
xTΣ−1x + xTΣ−1µ + const (2.71)

where ‘const’ denotes terms which are independent of x, and we have made use of
the symmetry of Σ. Thus if we take our general quadratic form and express it in
the form given by the right-hand side of (2.71), then we can immediately equate the
matrix of coefficients entering the second order term in x to the inverse covariance
matrix Σ−1 and the coefficient of the linear term in x to Σ−1µ, from which we can
obtain µ.

Now let us apply this procedure to the conditional Gaussian distribution p(xa|xb)
for which the quadratic form in the exponent is given by (2.70). We will denote the
mean and covariance of this distribution by µa|b and Σa|b, respectively. Consider
the functional dependence of (2.70) on xa in which xb is regarded as a constant. If
we pick out all terms that are second order in xa, we have

−1
2
xT

a Λaaxa (2.72)

from which we can immediately conclude that the covariance (inverse precision) of
p(xa|xb) is given by

Σa|b = Λ−1
aa . (2.73)
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Now consider all of the terms in (2.70) that are linear in xa

xT
a {Λaaµa − Λab(xb − µb)} (2.74)

where we have used ΛT
ba = Λab. From our discussion of the general form (2.71),

the coefficient of xa in this expression must equal Σ−1
a|bµa|b and hence

µa|b = Σa|b {Λaaµa − Λab(xb − µb)}
= µa − Λ−1

aa Λab(xb − µb) (2.75)

where we have made use of (2.73).
The results (2.73) and (2.75) are expressed in terms of the partitioned precision

matrix of the original joint distribution p(xa,xb). We can also express these results
in terms of the corresponding partitioned covariance matrix. To do this, we make use
of the following identity for the inverse of a partitioned matrixExercise 2.24 (

A B
C D

)−1

=
(

M −MBD−1

−D−1CM D−1 + D−1CMBD−1

)
(2.76)

where we have defined
M = (A − BD−1C)−1. (2.77)

The quantity M−1 is known as the Schur complement of the matrix on the left-hand
side of (2.76) with respect to the submatrix D. Using the definition(

Σaa Σab

Σba Σbb

)−1

=
(

Λaa Λab

Λba Λbb

)
(2.78)

and making use of (2.76), we have

Λaa = (Σaa − ΣabΣ−1
bb Σba)−1 (2.79)

Λab = −(Σaa − ΣabΣ−1
bb Σba)−1ΣabΣ−1

bb . (2.80)

From these we obtain the following expressions for the mean and covariance of the
conditional distribution p(xa|xb)

µa|b = µa + ΣabΣ−1
bb (xb − µb) (2.81)

Σa|b = Σaa − ΣabΣ−1
bb Σba. (2.82)

Comparing (2.73) and (2.82), we see that the conditional distribution p(xa|xb) takes
a simpler form when expressed in terms of the partitioned precision matrix than
when it is expressed in terms of the partitioned covariance matrix. Note that the
mean of the conditional distribution p(xa|xb), given by (2.81), is a linear function of
xb and that the covariance, given by (2.82), is independent of xa. This represents an
example of a linear-Gaussian model.Section 8.1.4
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2.3.2 Marginal Gaussian distributions
We have seen that if a joint distribution p(xa,xb) is Gaussian, then the condi-

tional distribution p(xa|xb) will again be Gaussian. Now we turn to a discussion of
the marginal distribution given by

p(xa) =
∫

p(xa,xb) dxb (2.83)

which, as we shall see, is also Gaussian. Once again, our strategy for evaluating this
distribution efficiently will be to focus on the quadratic form in the exponent of the
joint distribution and thereby to identify the mean and covariance of the marginal
distribution p(xa).

The quadratic form for the joint distribution can be expressed, using the par-
titioned precision matrix, in the form (2.70). Because our goal is to integrate out
xb, this is most easily achieved by first considering the terms involving xb and then
completing the square in order to facilitate integration. Picking out just those terms
that involve xb, we have

−1
2
xT

b Λbbxb+xT
b m = −1

2
(xb−Λ−1

bb m)TΛbb(xb−Λ−1
bb m)+

1
2
mTΛ−1

bb m (2.84)

where we have defined

m = Λbbµb − Λba(xa − µa). (2.85)

We see that the dependence on xb has been cast into the standard quadratic form of a
Gaussian distribution corresponding to the first term on the right-hand side of (2.84),
plus a term that does not depend on xb (but that does depend on xa). Thus, when
we take the exponential of this quadratic form, we see that the integration over xb

required by (2.83) will take the form∫
exp

{
−1

2
(xb − Λ−1

bb m)TΛbb(xb − Λ−1
bb m)

}
dxb. (2.86)

This integration is easily performed by noting that it is the integral over an unnor-
malized Gaussian, and so the result will be the reciprocal of the normalization co-
efficient. We know from the form of the normalized Gaussian given by (2.43), that
this coefficient is independent of the mean and depends only on the determinant of
the covariance matrix. Thus, by completing the square with respect to xb, we can
integrate out xb and the only term remaining from the contributions on the left-hand
side of (2.84) that depends on xa is the last term on the right-hand side of (2.84) in
which m is given by (2.85). Combining this term with the remaining terms from
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(2.70) that depend on xa, we obtain

1
2

[Λbbµb − Λba(xa − µa)]T Λ−1
bb [Λbbµb − Λba(xa − µa)]

−1
2
xT

a Λaaxa + xT
a (Λaaµa + Λabµb) + const

= −1
2
xT

a (Λaa − ΛabΛ−1
bb Λba)xa

+xT
a (Λaa − ΛabΛ−1

bb Λba)−1µa + const (2.87)

where ‘const’ denotes quantities independent of xa. Again, by comparison with
(2.71), we see that the covariance of the marginal distribution of p(xa) is given by

Σa = (Λaa − ΛabΛ−1
bb Λba)−1. (2.88)

Similarly, the mean is given by

Σa(Λaa − ΛabΛ−1
bb Λba)µa = µa (2.89)

where we have used (2.88). The covariance in (2.88) is expressed in terms of the
partitioned precision matrix given by (2.69). We can rewrite this in terms of the
corresponding partitioning of the covariance matrix given by (2.67), as we did for
the conditional distribution. These partitioned matrices are related by(

Λaa Λab

Λba Λbb

)−1

=
(

Σaa Σab

Σba Σbb

)
(2.90)

Making use of (2.76), we then have(
Λaa − ΛabΛ−1

bb Λba

)−1
= Σaa. (2.91)

Thus we obtain the intuitively satisfying result that the marginal distribution p(xa)
has mean and covariance given by

E[xa] = µa (2.92)

cov[xa] = Σaa. (2.93)

We see that for a marginal distribution, the mean and covariance are most simply ex-
pressed in terms of the partitioned covariance matrix, in contrast to the conditional
distribution for which the partitioned precision matrix gives rise to simpler expres-
sions.

Our results for the marginal and conditional distributions of a partitioned Gaus-
sian are summarized below.

Partitioned Gaussians

Given a joint Gaussian distribution N (x|µ,Σ) with Λ ≡ Σ−1 and

x =
(

xa

xb

)
, µ =

(
µa

µb

)
(2.94)
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Figure 2.9 The plot on the left shows the contours of a Gaussian distribution p(xa, xb) over two variables, and
the plot on the right shows the marginal distribution p(xa) (blue curve) and the conditional distribution p(xa|xb)
for xb = 0.7 (red curve).

Σ =
(

Σaa Σab

Σba Σbb

)
, Λ =

(
Λaa Λab

Λba Λbb

)
. (2.95)

Conditional distribution:

p(xa|xb) = N (x|µa|b,Λ
−1
aa ) (2.96)

µa|b = µa − Λ−1
aa Λab(xb − µb). (2.97)

Marginal distribution:

p(xa) = N (xa|µa,Σaa). (2.98)

We illustrate the idea of conditional and marginal distributions associated with
a multivariate Gaussian using an example involving two variables in Figure 2.9.

2.3.3 Bayes’ theorem for Gaussian variables
In Sections 2.3.1 and 2.3.2, we considered a Gaussian p(x) in which we parti-

tioned the vector x into two subvectors x = (xa,xb) and then found expressions for
the conditional distribution p(xa|xb) and the marginal distribution p(xa). We noted
that the mean of the conditional distribution p(xa|xb) was a linear function of xb.
Here we shall suppose that we are given a Gaussian marginal distribution p(x) and a
Gaussian conditional distribution p(y|x) in which p(y|x) has a mean that is a linear
function of x, and a covariance which is independent of x. This is an example of



2.3. The Gaussian Distribution 91

a linear Gaussian model (Roweis and Ghahramani, 1999), which we shall study in
greater generality in Section 8.1.4. We wish to find the marginal distribution p(y)
and the conditional distribution p(x|y). This is a problem that will arise frequently
in subsequent chapters, and it will prove convenient to derive the general results here.

We shall take the marginal and conditional distributions to be

p(x) = N (
x|µ,Λ−1

)
(2.99)

p(y|x) = N (
y|Ax + b,L−1

)
(2.100)

where µ, A, and b are parameters governing the means, and Λ and L are precision
matrices. If x has dimensionality M and y has dimensionality D, then the matrix A
has size D × M .

First we find an expression for the joint distribution over x and y. To do this, we
define

z =
(

x
y

)
(2.101)

and then consider the log of the joint distribution

ln p(z) = ln p(x) + ln p(y|x)

= −1
2
(x − µ)TΛ(x − µ)

−1
2
(y − Ax − b)TL(y − Ax − b) + const (2.102)

where ‘const’ denotes terms independent of x and y. As before, we see that this is a
quadratic function of the components of z, and hence p(z) is Gaussian distribution.
To find the precision of this Gaussian, we consider the second order terms in (2.102),
which can be written as

−1
2
xT(Λ + ATLA)x − 1

2
yTLy +

1
2
yTLAx +

1
2
xTATLy

= −1
2

(
x
y

)T(
Λ + ATLA −ATL

−LA L

)(
x
y

)
= −1

2
zTRz (2.103)

and so the Gaussian distribution over z has precision (inverse covariance) matrix
given by

R =
(

Λ + ATLA −ATL
−LA L

)
. (2.104)

The covariance matrix is found by taking the inverse of the precision, which can be
done using the matrix inversion formula (2.76) to giveExercise 2.29

cov[z] = R−1 =
(

Λ−1 Λ−1AT

AΛ−1 L−1 + AΛ−1AT

)
. (2.105)
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Similarly, we can find the mean of the Gaussian distribution over z by identify-
ing the linear terms in (2.102), which are given by

xTΛµ − xTATLb + yTLb =
(

x
y

)T(
Λµ − ATLb

Lb

)
. (2.106)

Using our earlier result (2.71) obtained by completing the square over the quadratic
form of a multivariate Gaussian, we find that the mean of z is given by

E[z] = R−1

(
Λµ − ATLb

Lb

)
. (2.107)

Making use of (2.105), we then obtainExercise 2.30

E[z] =
(

µ
Aµ + b

)
. (2.108)

Next we find an expression for the marginal distribution p(y) in which we have
marginalized over x. Recall that the marginal distribution over a subset of the com-
ponents of a Gaussian random vector takes a particularly simple form when ex-
pressed in terms of the partitioned covariance matrix. Specifically, its mean andSection 2.3
covariance are given by (2.92) and (2.93), respectively. Making use of (2.105) and
(2.108) we see that the mean and covariance of the marginal distribution p(y) are
given by

E[y] = Aµ + b (2.109)

cov[y] = L−1 + AΛ−1AT. (2.110)

A special case of this result is when A = I, in which case it reduces to the convolu-
tion of two Gaussians, for which we see that the mean of the convolution is the sum
of the mean of the two Gaussians, and the covariance of the convolution is the sum
of their covariances.

Finally, we seek an expression for the conditional p(x|y). Recall that the results
for the conditional distribution are most easily expressed in terms of the partitioned
precision matrix, using (2.73) and (2.75). Applying these results to (2.105) andSection 2.3
(2.108) we see that the conditional distribution p(x|y) has mean and covariance
given by

E[x|y] = (Λ + ATLA)−1
{
ATL(y − b) + Λµ

}
(2.111)

cov[x|y] = (Λ + ATLA)−1. (2.112)

The evaluation of this conditional can be seen as an example of Bayes’ theorem.
We can interpret the distribution p(x) as a prior distribution over x. If the variable
y is observed, then the conditional distribution p(x|y) represents the corresponding
posterior distribution over x. Having found the marginal and conditional distribu-
tions, we effectively expressed the joint distribution p(z) = p(x)p(y|x) in the form
p(x|y)p(y). These results are summarized below.
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Marginal and Conditional Gaussians

Given a marginal Gaussian distribution for x and a conditional Gaussian distri-
bution for y given x in the form

p(x) = N (x|µ,Λ−1) (2.113)

p(y|x) = N (y|Ax + b,L−1) (2.114)

the marginal distribution of y and the conditional distribution of x given y are
given by

p(y) = N (y|Aµ + b,L−1 + AΛ−1AT) (2.115)

p(x|y) = N (x|Σ{ATL(y − b) + Λµ},Σ) (2.116)

where
Σ = (Λ + ATLA)−1. (2.117)

2.3.4 Maximum likelihood for the Gaussian
Given a data set X = (x1, . . . ,xN )T in which the observations {xn} are as-

sumed to be drawn independently from a multivariate Gaussian distribution, we can
estimate the parameters of the distribution by maximum likelihood. The log likeli-
hood function is given by

ln p(X|µ,Σ) = −ND

2
ln(2π)−N

2
ln |Σ|−1

2

N∑
n=1

(xn−µ)TΣ−1(xn−µ). (2.118)

By simple rearrangement, we see that the likelihood function depends on the data set
only through the two quantities

N∑
n=1

xn,

N∑
n=1

xnxT
n . (2.119)

These are known as the sufficient statistics for the Gaussian distribution. Using
(C.19), the derivative of the log likelihood with respect to µ is given byAppendix C

∂

∂µ
ln p(X|µ,Σ) =

N∑
n=1

Σ−1(xn − µ) (2.120)

and setting this derivative to zero, we obtain the solution for the maximum likelihood
estimate of the mean given by

µML =
1
N

N∑
n=1

xn (2.121)
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which is the mean of the observed set of data points. The maximization of (2.118)
with respect to Σ is rather more involved. The simplest approach is to ignore the
symmetry constraint and show that the resulting solution is symmetric as required.Exercise 2.34
Alternative derivations of this result, which impose the symmetry and positive defi-
niteness constraints explicitly, can be found in Magnus and Neudecker (1999). The
result is as expected and takes the form

ΣML =
1
N

N∑
n=1

(xn − µML)(xn − µML)T (2.122)

which involves µML because this is the result of a joint maximization with respect
to µ and Σ. Note that the solution (2.121) for µML does not depend on ΣML, and so
we can first evaluate µML and then use this to evaluate ΣML.

If we evaluate the expectations of the maximum likelihood solutions under the
true distribution, we obtain the following resultsExercise 2.35

E[µML] = µ (2.123)

E[ΣML] =
N − 1

N
Σ. (2.124)

We see that the expectation of the maximum likelihood estimate for the mean is equal
to the true mean. However, the maximum likelihood estimate for the covariance has
an expectation that is less than the true value, and hence it is biased. We can correct
this bias by defining a different estimator Σ̃ given by

Σ̃ =
1

N − 1

N∑
n=1

(xn − µML)(xn − µML)T. (2.125)

Clearly from (2.122) and (2.124), the expectation of Σ̃ is equal to Σ.

2.3.5 Sequential estimation
Our discussion of the maximum likelihood solution for the parameters of a Gaus-

sian distribution provides a convenient opportunity to give a more general discussion
of the topic of sequential estimation for maximum likelihood. Sequential methods
allow data points to be processed one at a time and then discarded and are important
for on-line applications, and also where large data sets are involved so that batch
processing of all data points at once is infeasible.

Consider the result (2.121) for the maximum likelihood estimator of the mean
µML, which we will denote by µ

(N)
ML when it is based on N observations. If we
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Figure 2.10 A schematic illustration of two correlated ran-
dom variables z and θ, together with the
regression function f(θ) given by the con-
ditional expectation E[z|θ]. The Robbins-
Monro algorithm provides a general sequen-
tial procedure for finding the root θ� of such
functions. θ

z

θ�

f(θ)

dissect out the contribution from the final data point xN , we obtain

µ
(N)
ML =

1
N

N∑
n=1

xn

=
1
N

xN +
1
N

N−1∑
n=1

xn

=
1
N

xN +
N − 1

N
µ

(N−1)
ML

= µ
(N−1)
ML +

1
N

(xN − µ
(N−1)
ML ). (2.126)

This result has a nice interpretation, as follows. After observing N − 1 data points
we have estimated µ by µ

(N−1)
ML . We now observe data point xN , and we obtain our

revised estimate µ
(N)
ML by moving the old estimate a small amount, proportional to

1/N , in the direction of the ‘error signal’ (xN −µ
(N−1)
ML ). Note that, as N increases,

so the contribution from successive data points gets smaller.
The result (2.126) will clearly give the same answer as the batch result (2.121)

because the two formulae are equivalent. However, we will not always be able to de-
rive a sequential algorithm by this route, and so we seek a more general formulation
of sequential learning, which leads us to the Robbins-Monro algorithm. Consider a
pair of random variables θ and z governed by a joint distribution p(z, θ). The con-
ditional expectation of z given θ defines a deterministic function f(θ) that is given
by

f(θ) ≡ E[z|θ] =
∫

zp(z|θ) dz (2.127)

and is illustrated schematically in Figure 2.10. Functions defined in this way are
called regression functions.

Our goal is to find the root θ� at which f(θ�) = 0. If we had a large data set
of observations of z and θ, then we could model the regression function directly and
then obtain an estimate of its root. Suppose, however, that we observe values of
z one at a time and we wish to find a corresponding sequential estimation scheme
for θ�. The following general procedure for solving such problems was given by
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Robbins and Monro (1951). We shall assume that the conditional variance of z is
finite so that

E
[
(z − f)2 | θ] < ∞ (2.128)

and we shall also, without loss of generality, consider the case where f(θ) > 0 for
θ > θ� and f(θ) < 0 for θ < θ�, as is the case in Figure 2.10. The Robbins-Monro
procedure then defines a sequence of successive estimates of the root θ� given by

θ(N) = θ(N−1) + aN−1z(θ(N−1)) (2.129)

where z(θ(N)) is an observed value of z when θ takes the value θ(N). The coefficients
{aN} represent a sequence of positive numbers that satisfy the conditions

lim
N→∞

aN = 0 (2.130)

∞∑
N=1

aN = ∞ (2.131)

∞∑
N=1

a2
N < ∞. (2.132)

It can then be shown (Robbins and Monro, 1951; Fukunaga, 1990) that the sequence
of estimates given by (2.129) does indeed converge to the root with probability one.
Note that the first condition (2.130) ensures that the successive corrections decrease
in magnitude so that the process can converge to a limiting value. The second con-
dition (2.131) is required to ensure that the algorithm does not converge short of the
root, and the third condition (2.132) is needed to ensure that the accumulated noise
has finite variance and hence does not spoil convergence.

Now let us consider how a general maximum likelihood problem can be solved
sequentially using the Robbins-Monro algorithm. By definition, the maximum like-
lihood solution θML is a stationary point of the log likelihood function and hence
satisfies

∂

∂θ

{
1
N

N∑
n=1

ln p(xn|θ)
}∣∣∣∣∣

θML

= 0. (2.133)

Exchanging the derivative and the summation, and taking the limit N → ∞ we have

lim
N→∞

1
N

N∑
n=1

∂

∂θ
ln p(xn|θ) = Ex

[
∂

∂θ
ln p(x|θ)

]
(2.134)

and so we see that finding the maximum likelihood solution corresponds to find-
ing the root of a regression function. We can therefore apply the Robbins-Monro
procedure, which now takes the form

θ(N) = θ(N−1) + aN−1
∂

∂θ(N−1)
ln p(xN |θ(N−1)). (2.135)
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Figure 2.11 In the case of a Gaussian distribution, with θ
corresponding to the mean µ, the regression
function illustrated in Figure 2.10 takes the form
of a straight line, as shown in red. In this
case, the random variable z corresponds to the
derivative of the log likelihood function and is
given by (x−µML)/σ2, and its expectation that
defines the regression function is a straight line
given by (µ − µML)/σ2. The root of the regres-
sion function corresponds to the maximum like-
lihood estimator µML.

µ

z

p(z|µ)

µML

As a specific example, we consider once again the sequential estimation of the
mean of a Gaussian distribution, in which case the parameter θ(N) is the estimate
µ

(N)
ML of the mean of the Gaussian, and the random variable z is given by

z =
∂

∂µML

ln p(x|µML, σ2) =
1
σ2

(x − µML). (2.136)

Thus the distribution of z is Gaussian with mean µ − µML, as illustrated in Fig-
ure 2.11. Substituting (2.136) into (2.135), we obtain the univariate form of (2.126),
provided we choose the coefficients aN to have the form aN = σ2/N . Note that
although we have focussed on the case of a single variable, the same technique,
together with the same restrictions (2.130)–(2.132) on the coefficients aN , apply
equally to the multivariate case (Blum, 1965).

2.3.6 Bayesian inference for the Gaussian
The maximum likelihood framework gave point estimates for the parameters µ

and Σ. Now we develop a Bayesian treatment by introducing prior distributions
over these parameters. Let us begin with a simple example in which we consider a
single Gaussian random variable x. We shall suppose that the variance σ2 is known,
and we consider the task of inferring the mean µ given a set of N observations
X = {x1, . . . , xN}. The likelihood function, that is the probability of the observed
data given µ, viewed as a function of µ, is given by

p(X|µ) =
N∏

n=1

p(xn|µ) =
1

(2πσ2)N/2
exp

{
− 1

2σ2

N∑
n=1

(xn − µ)2
}

. (2.137)

Again we emphasize that the likelihood function p(X|µ) is not a probability distri-
bution over µ and is not normalized.

We see that the likelihood function takes the form of the exponential of a quad-
ratic form in µ. Thus if we choose a prior p(µ) given by a Gaussian, it will be a
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conjugate distribution for this likelihood function because the corresponding poste-
rior will be a product of two exponentials of quadratic functions of µ and hence will
also be Gaussian. We therefore take our prior distribution to be

p(µ) = N (
µ|µ0, σ

2
0

)
(2.138)

and the posterior distribution is given by

p(µ|X) ∝ p(X|µ)p(µ). (2.139)

Simple manipulation involving completing the square in the exponent shows that theExercise 2.38
posterior distribution is given by

p(µ|X) = N (
µ|µN , σ2

N

)
(2.140)

where

µN =
σ2

Nσ2
0 + σ2

µ0 +
Nσ2

0

Nσ2
0 + σ2

µML (2.141)

1
σ2

N

=
1
σ2

0

+
N

σ2
(2.142)

in which µML is the maximum likelihood solution for µ given by the sample mean

µML =
1
N

N∑
n=1

xn. (2.143)

It is worth spending a moment studying the form of the posterior mean and
variance. First of all, we note that the mean of the posterior distribution given by
(2.141) is a compromise between the prior mean µ0 and the maximum likelihood
solution µML. If the number of observed data points N = 0, then (2.141) reduces
to the prior mean as expected. For N → ∞, the posterior mean is given by the
maximum likelihood solution. Similarly, consider the result (2.142) for the variance
of the posterior distribution. We see that this is most naturally expressed in terms
of the inverse variance, which is called the precision. Furthermore, the precisions
are additive, so that the precision of the posterior is given by the precision of the
prior plus one contribution of the data precision from each of the observed data
points. As we increase the number of observed data points, the precision steadily
increases, corresponding to a posterior distribution with steadily decreasing variance.
With no observed data points, we have the prior variance, whereas if the number of
data points N → ∞, the variance σ2

N goes to zero and the posterior distribution
becomes infinitely peaked around the maximum likelihood solution. We therefore
see that the maximum likelihood result of a point estimate for µ given by (2.143) is
recovered precisely from the Bayesian formalism in the limit of an infinite number
of observations. Note also that for finite N , if we take the limit σ2

0 → ∞ in which the
prior has infinite variance then the posterior mean (2.141) reduces to the maximum
likelihood result, while from (2.142) the posterior variance is given by σ2

N = σ2/N .
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Figure 2.12 Illustration of Bayesian inference for
the mean µ of a Gaussian distri-
bution, in which the variance is as-
sumed to be known. The curves
show the prior distribution over µ
(the curve labelled N = 0), which
in this case is itself Gaussian, along
with the posterior distribution given
by (2.140) for increasing numbers N
of data points. The data points are
generated from a Gaussian of mean
0.8 and variance 0.1, and the prior is
chosen to have mean 0. In both the
prior and the likelihood function, the
variance is set to the true value.
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N = 2

N = 10
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We illustrate our analysis of Bayesian inference for the mean of a Gaussian
distribution in Figure 2.12. The generalization of this result to the case of a D-
dimensional Gaussian random variable x with known covariance and unknown mean
is straightforward.Exercise 2.40

We have already seen how the maximum likelihood expression for the mean of
a Gaussian can be re-cast as a sequential update formula in which the mean afterSection 2.3.5
observing N data points was expressed in terms of the mean after observing N − 1
data points together with the contribution from data point xN . In fact, the Bayesian
paradigm leads very naturally to a sequential view of the inference problem. To see
this in the context of the inference of the mean of a Gaussian, we write the posterior
distribution with the contribution from the final data point xN separated out so that

p(µ|D) ∝
[
p(µ)

N−1∏
n=1

p(xn|µ)

]
p(xN |µ). (2.144)

The term in square brackets is (up to a normalization coefficient) just the posterior
distribution after observing N − 1 data points. We see that this can be viewed as
a prior distribution, which is combined using Bayes’ theorem with the likelihood
function associated with data point xN to arrive at the posterior distribution after
observing N data points. This sequential view of Bayesian inference is very general
and applies to any problem in which the observed data are assumed to be independent
and identically distributed.

So far, we have assumed that the variance of the Gaussian distribution over the
data is known and our goal is to infer the mean. Now let us suppose that the mean
is known and we wish to infer the variance. Again, our calculations will be greatly
simplified if we choose a conjugate form for the prior distribution. It turns out to be
most convenient to work with the precision λ ≡ 1/σ2. The likelihood function for λ
takes the form

p(X|λ) =
N∏

n=1

N (xn|µ, λ−1) ∝ λN/2 exp

{
−λ

2

N∑
n=1

(xn − µ)2
}

. (2.145)
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Figure 2.13 Plot of the gamma distribution Gam(λ|a, b) defined by (2.146) for various values of the parameters
a and b.

The corresponding conjugate prior should therefore be proportional to the product
of a power of λ and the exponential of a linear function of λ. This corresponds to
the gamma distribution which is defined by

Gam(λ|a, b) =
1

Γ(a)
baλa−1 exp(−bλ). (2.146)

Here Γ(a) is the gamma function that is defined by (1.141) and that ensures that
(2.146) is correctly normalized. The gamma distribution has a finite integral if a > 0,Exercise 2.41
and the distribution itself is finite if a � 1. It is plotted, for various values of a and
b, in Figure 2.13. The mean and variance of the gamma distribution are given byExercise 2.42

E[λ] =
a

b
(2.147)

var[λ] =
a

b2
. (2.148)

Consider a prior distribution Gam(λ|a0, b0). If we multiply by the likelihood
function (2.145), then we obtain a posterior distribution

p(λ|X) ∝ λa0−1λN/2 exp

{
−b0λ − λ

2

N∑
n=1

(xn − µ)2
}

(2.149)

which we recognize as a gamma distribution of the form Gam(λ|aN , bN ) where

aN = a0 +
N

2
(2.150)

bN = b0 +
1
2

N∑
n=1

(xn − µ)2 = b0 +
N

2
σ2

ML (2.151)

where σ2
ML is the maximum likelihood estimator of the variance. Note that in (2.149)

there is no need to keep track of the normalization constants in the prior and the
likelihood function because, if required, the correct coefficient can be found at the
end using the normalized form (2.146) for the gamma distribution.
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From (2.150), we see that the effect of observing N data points is to increase
the value of the coefficient a by N/2. Thus we can interpret the parameter a0 in
the prior in terms of 2a0 ‘effective’ prior observations. Similarly, from (2.151) we
see that the N data points contribute Nσ2

ML/2 to the parameter b, where σ2
ML is

the variance, and so we can interpret the parameter b0 in the prior as arising from
the 2a0 ‘effective’ prior observations having variance 2b0/(2a0) = b0/a0. Recall
that we made an analogous interpretation for the Dirichlet prior. These distributionsSection 2.2
are examples of the exponential family, and we shall see that the interpretation of
a conjugate prior in terms of effective fictitious data points is a general one for the
exponential family of distributions.

Instead of working with the precision, we can consider the variance itself. The
conjugate prior in this case is called the inverse gamma distribution, although we
shall not discuss this further because we will find it more convenient to work with
the precision.

Now suppose that both the mean and the precision are unknown. To find a
conjugate prior, we consider the dependence of the likelihood function on µ and λ

p(X|µ, λ) =
N∏

n=1

(
λ

2π

)1/2

exp
{
−λ

2
(xn − µ)2

}

∝
[
λ1/2 exp

(
−λµ2

2

)]N

exp

{
λµ

N∑
n=1

xn − λ

2

N∑
n=1

x2
n

}
. (2.152)

We now wish to identify a prior distribution p(µ, λ) that has the same functional
dependence on µ and λ as the likelihood function and that should therefore take the
form

p(µ, λ) ∝
[
λ1/2 exp

(
−λµ2

2

)]β

exp {cλµ − dλ}

= exp
{
−βλ

2
(µ − c/β)2

}
λβ/2 exp

{
−
(

d − c2

2β

)
λ

}
(2.153)

where c, d, and β are constants. Since we can always write p(µ, λ) = p(µ|λ)p(λ),
we can find p(µ|λ) and p(λ) by inspection. In particular, we see that p(µ|λ) is a
Gaussian whose precision is a linear function of λ and that p(λ) is a gamma distri-
bution, so that the normalized prior takes the form

p(µ, λ) = N (µ|µ0, (βλ)−1)Gam(λ|a, b) (2.154)

where we have defined new constants given by µ0 = c/β, a = 1 + β/2, b =
d−c2/2β. The distribution (2.154) is called the normal-gamma or Gaussian-gamma
distribution and is plotted in Figure 2.14. Note that this is not simply the product
of an independent Gaussian prior over µ and a gamma prior over λ, because the
precision of µ is a linear function of λ. Even if we chose a prior in which µ and λ
were independent, the posterior distribution would exhibit a coupling between the
precision of µ and the value of λ.
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Figure 2.14 Contour plot of the normal-gamma
distribution (2.154) for parameter
values µ0 = 0, β = 2, a = 5 and
b = 6.
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In the case of the multivariate Gaussian distribution N (
x|µ,Λ−1

)
for a D-

dimensional variable x, the conjugate prior distribution for the mean µ, assuming
the precision is known, is again a Gaussian. For known mean and unknown precision
matrix Λ, the conjugate prior is the Wishart distribution given byExercise 2.45

W(Λ|W, ν) = B|Λ|(ν−D−1)/2 exp
(
−1

2
Tr(W−1Λ)

)
(2.155)

where ν is called the number of degrees of freedom of the distribution, W is a D×D
scale matrix, and Tr(·) denotes the trace. The normalization constant B is given by

B(W, ν) = |W|−ν/2

(
2νD/2 πD(D−1)/4

D∏
i=1

Γ
(

ν + 1 − i

2

))−1

. (2.156)

Again, it is also possible to define a conjugate prior over the covariance matrix itself,
rather than over the precision matrix, which leads to the inverse Wishart distribu-
tion, although we shall not discuss this further. If both the mean and the precision
are unknown, then, following a similar line of reasoning to the univariate case, the
conjugate prior is given by

p(µ,Λ|µ0, β,W, ν) = N (µ|µ0, (βΛ)−1)W(Λ|W, ν) (2.157)

which is known as the normal-Wishart or Gaussian-Wishart distribution.

2.3.7 Student’s t-distribution
We have seen that the conjugate prior for the precision of a Gaussian is given

by a gamma distribution. If we have a univariate Gaussian N (x|µ, τ−1) togetherSection 2.3.6
with a Gamma prior Gam(τ |a, b) and we integrate out the precision, we obtain the
marginal distribution of x in the formExercise 2.46
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Figure 2.15 Plot of Student’s t-distribution (2.159)
for µ = 0 and λ = 1 for various values
of ν. The limit ν → ∞ corresponds
to a Gaussian distribution with mean
µ and precision λ.
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p(x|µ, a, b) =
∫ ∞

0

N (x|µ, τ−1)Gam(τ |a, b) dτ (2.158)

=
∫ ∞

0

bae(−bτ)τa−1

Γ(a)

( τ

2π

)1/2

exp
{
−τ

2
(x − µ)2

}
dτ

=
ba

Γ(a)

(
1
2π

)1/2 [
b +

(x − µ)2

2

]−a−1/2

Γ(a + 1/2)

where we have made the change of variable z = τ [b + (x − µ)2/2]. By convention
we define new parameters given by ν = 2a and λ = a/b, in terms of which the
distribution p(x|µ, a, b) takes the form

St(x|µ, λ, ν) =
Γ(ν/2 + 1/2)

Γ(ν/2)

(
λ

πν

)1/2 [
1 +

λ(x − µ)2

ν

]−ν/2−1/2

(2.159)

which is known as Student’s t-distribution. The parameter λ is sometimes called the
precision of the t-distribution, even though it is not in general equal to the inverse
of the variance. The parameter ν is called the degrees of freedom, and its effect is
illustrated in Figure 2.15. For the particular case of ν = 1, the t-distribution reduces
to the Cauchy distribution, while in the limit ν → ∞ the t-distribution St(x|µ, λ, ν)
becomes a Gaussian N (x|µ, λ−1) with mean µ and precision λ.Exercise 2.47

From (2.158), we see that Student’s t-distribution is obtained by adding up an
infinite number of Gaussian distributions having the same mean but different preci-
sions. This can be interpreted as an infinite mixture of Gaussians (Gaussian mixtures
will be discussed in detail in Section 2.3.9. The result is a distribution that in gen-
eral has longer ‘tails’ than a Gaussian, as was seen in Figure 2.15. This gives the t-
distribution an important property called robustness, which means that it is much less
sensitive than the Gaussian to the presence of a few data points which are outliers.
The robustness of the t-distribution is illustrated in Figure 2.16, which compares the
maximum likelihood solutions for a Gaussian and a t-distribution. Note that the max-
imum likelihood solution for the t-distribution can be found using the expectation-
maximization (EM) algorithm. Here we see that the effect of a small number ofExercise 12.24



104 2. PROBABILITY DISTRIBUTIONS

(a)

−5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

(b)

−5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

Figure 2.16 Illustration of the robustness of Student’s t-distribution compared to a Gaussian. (a) Histogram
distribution of 30 data points drawn from a Gaussian distribution, together with the maximum likelihood fit ob-
tained from a t-distribution (red curve) and a Gaussian (green curve, largely hidden by the red curve). Because
the t-distribution contains the Gaussian as a special case it gives almost the same solution as the Gaussian.
(b) The same data set but with three additional outlying data points showing how the Gaussian (green curve) is
strongly distorted by the outliers, whereas the t-distribution (red curve) is relatively unaffected.

outliers is much less significant for the t-distribution than for the Gaussian. Outliers
can arise in practical applications either because the process that generates the data
corresponds to a distribution having a heavy tail or simply through mislabelled data.
Robustness is also an important property for regression problems. Unsurprisingly,
the least squares approach to regression does not exhibit robustness, because it cor-
responds to maximum likelihood under a (conditional) Gaussian distribution. By
basing a regression model on a heavy-tailed distribution such as a t-distribution, we
obtain a more robust model.

If we go back to (2.158) and substitute the alternative parameters ν = 2a, λ =
a/b, and η = τb/a, we see that the t-distribution can be written in the form

St(x|µ, λ, ν) =
∫ ∞

0

N (
x|µ, (ηλ)−1

)
Gam(η|ν/2, ν/2) dη. (2.160)

We can then generalize this to a multivariate Gaussian N (x|µ,Λ) to obtain the cor-
responding multivariate Student’s t-distribution in the form

St(x|µ,Λ, ν) =
∫ ∞

0

N (x|µ, (ηΛ)−1)Gam(η|ν/2, ν/2) dη. (2.161)

Using the same technique as for the univariate case, we can evaluate this integral to
giveExercise 2.48
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St(x|µ,Λ, ν) =
Γ(D/2 + ν/2)

Γ(ν/2)
|Λ|1/2

(πν)D/2

[
1 +

∆2

ν

]−D/2−ν/2

(2.162)

where D is the dimensionality of x, and ∆2 is the squared Mahalanobis distance
defined by

∆2 = (x − µ)TΛ(x − µ). (2.163)

This is the multivariate form of Student’s t-distribution and satisfies the following
propertiesExercise 2.49

E[x] = µ, if ν > 1 (2.164)

cov[x] =
ν

(ν − 2)
Λ−1, if ν > 2 (2.165)

mode[x] = µ (2.166)

with corresponding results for the univariate case.

2.3.8 Periodic variables
Although Gaussian distributions are of great practical significance, both in their

own right and as building blocks for more complex probabilistic models, there are
situations in which they are inappropriate as density models for continuous vari-
ables. One important case, which arises in practical applications, is that of periodic
variables.

An example of a periodic variable would be the wind direction at a particular
geographical location. We might, for instance, measure values of wind direction on a
number of days and wish to summarize this using a parametric distribution. Another
example is calendar time, where we may be interested in modelling quantities that
are believed to be periodic over 24 hours or over an annual cycle. Such quantities
can conveniently be represented using an angular (polar) coordinate 0 � θ < 2π.

We might be tempted to treat periodic variables by choosing some direction
as the origin and then applying a conventional distribution such as the Gaussian.
Such an approach, however, would give results that were strongly dependent on the
arbitrary choice of origin. Suppose, for instance, that we have two observations at
θ1 = 1◦ and θ2 = 359◦, and we model them using a standard univariate Gaussian
distribution. If we choose the origin at 0◦, then the sample mean of this data set
will be 180◦ with standard deviation 179◦, whereas if we choose the origin at 180◦,
then the mean will be 0◦ and the standard deviation will be 1◦. We clearly need to
develop a special approach for the treatment of periodic variables.

Let us consider the problem of evaluating the mean of a set of observations
D = {θ1, . . . , θN} of a periodic variable. From now on, we shall assume that θ is
measured in radians. We have already seen that the simple average (θ1+· · ·+θN )/N
will be strongly coordinate dependent. To find an invariant measure of the mean, we
note that the observations can be viewed as points on the unit circle and can therefore
be described instead by two-dimensional unit vectors x1, . . . ,xN where ‖xn‖ = 1
for n = 1, . . . , N , as illustrated in Figure 2.17. We can average the vectors {xn}
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Figure 2.17 Illustration of the representation of val-
ues θn of a periodic variable as two-
dimensional vectors xn living on the unit
circle. Also shown is the average x of
those vectors.
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instead to give

x =
1
N

N∑
n=1

xn (2.167)

and then find the corresponding angle θ of this average. Clearly, this definition will
ensure that the location of the mean is independent of the origin of the angular coor-
dinate. Note that x will typically lie inside the unit circle. The Cartesian coordinates
of the observations are given by xn = (cos θn, sin θn), and we can write the Carte-
sian coordinates of the sample mean in the form x = (r cos θ, r sin θ). Substituting
into (2.167) and equating the x1 and x2 components then gives

r cos θ =
1
N

N∑
n=1

cos θn, r sin θ =
1
N

N∑
n=1

sin θn. (2.168)

Taking the ratio, and using the identity tan θ = sin θ/ cos θ, we can solve for θ to
give

θ = tan−1

{∑
n sin θn∑
n cos θn

}
. (2.169)

Shortly, we shall see how this result arises naturally as the maximum likelihood
estimator for an appropriately defined distribution over a periodic variable.

We now consider a periodic generalization of the Gaussian called the von Mises
distribution. Here we shall limit our attention to univariate distributions, although
periodic distributions can also be found over hyperspheres of arbitrary dimension.
For an extensive discussion of periodic distributions, see Mardia and Jupp (2000).

By convention, we will consider distributions p(θ) that have period 2π. Any
probability density p(θ) defined over θ must not only be nonnegative and integrate
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Figure 2.18 The von Mises distribution can be derived by considering
a two-dimensional Gaussian of the form (2.173), whose
density contours are shown in blue and conditioning on
the unit circle shown in red.
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p(x)

r = 1

to one, but it must also be periodic. Thus p(θ) must satisfy the three conditions

p(θ) � 0 (2.170)∫ 2π

0

p(θ) dθ = 1 (2.171)

p(θ + 2π) = p(θ). (2.172)

From (2.172), it follows that p(θ + M2π) = p(θ) for any integer M .
We can easily obtain a Gaussian-like distribution that satisfies these three prop-

erties as follows. Consider a Gaussian distribution over two variables x = (x1, x2)
having mean µ = (µ1, µ2) and a covariance matrix Σ = σ2I where I is the 2 × 2
identity matrix, so that

p(x1, x2) =
1

2πσ2
exp

{
−(x1 − µ1)2 + (x2 − µ2)2

2σ2

}
. (2.173)

The contours of constant p(x) are circles, as illustrated in Figure 2.18. Now suppose
we consider the value of this distribution along a circle of fixed radius. Then by con-
struction this distribution will be periodic, although it will not be normalized. We can
determine the form of this distribution by transforming from Cartesian coordinates
(x1, x2) to polar coordinates (r, θ) so that

x1 = r cos θ, x2 = r sin θ. (2.174)

We also map the mean µ into polar coordinates by writing

µ1 = r0 cos θ0, µ2 = r0 sin θ0. (2.175)

Next we substitute these transformations into the two-dimensional Gaussian distribu-
tion (2.173), and then condition on the unit circle r = 1, noting that we are interested
only in the dependence on θ. Focussing on the exponent in the Gaussian distribution
we have

− 1
2σ2

{
(r cos θ − r0 cos θ0)2 + (r sin θ − r0 sin θ0)2

}
= − 1

2σ2

{
1 + r2

0 − 2r0 cos θ cos θ0 − 2r0 sin θ sin θ0

}
=

r0

σ2
cos(θ − θ0) + const (2.176)
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m = 5, θ0 = π/4

m = 1, θ0 = 3π/4
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m = 5, θ0 = π/4
m = 1, θ0 = 3π/4

Figure 2.19 The von Mises distribution plotted for two different parameter values, shown as a Cartesian plot
on the left and as the corresponding polar plot on the right.

where ‘const’ denotes terms independent of θ, and we have made use of the following
trigonometrical identitiesExercise 2.51

cos2 A + sin2 A = 1 (2.177)

cos A cos B + sinA sin B = cos(A − B). (2.178)

If we now define m = r0/σ2, we obtain our final expression for the distribution of
p(θ) along the unit circle r = 1 in the form

p(θ|θ0, m) =
1

2πI0(m)
exp {m cos(θ − θ0)} (2.179)

which is called the von Mises distribution, or the circular normal. Here the param-
eter θ0 corresponds to the mean of the distribution, while m, which is known as
the concentration parameter, is analogous to the inverse variance (precision) for the
Gaussian. The normalization coefficient in (2.179) is expressed in terms of I0(m),
which is the zeroth-order Bessel function of the first kind (Abramowitz and Stegun,
1965) and is defined by

I0(m) =
1
2π

∫ 2π

0

exp {m cos θ} dθ. (2.180)

For large m, the distribution becomes approximately Gaussian. The von Mises dis-Exercise 2.52
tribution is plotted in Figure 2.19, and the function I0(m) is plotted in Figure 2.20.

Now consider the maximum likelihood estimators for the parameters θ0 and m
for the von Mises distribution. The log likelihood function is given by

ln p(D|θ0, m) = −N ln(2π) − N ln I0(m) + m

N∑
n=1

cos(θn − θ0). (2.181)
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Figure 2.20 Plot of the Bessel function I0(m) defined by (2.180), together with the function A(m) defined by
(2.186).

Setting the derivative with respect to θ0 equal to zero gives

N∑
n=1

sin(θn − θ0) = 0. (2.182)

To solve for θ0, we make use of the trigonometric identity

sin(A − B) = cos B sin A − cos A sin B (2.183)

from which we obtainExercise 2.53

θML
0 = tan−1

{∑
n sin θn∑
n cos θn

}
(2.184)

which we recognize as the result (2.169) obtained earlier for the mean of the obser-
vations viewed in a two-dimensional Cartesian space.

Similarly, maximizing (2.181) with respect to m, and making use of I ′0(m) =
I1(m) (Abramowitz and Stegun, 1965), we have

A(m) =
1
N

N∑
n=1

cos(θn − θML
0 ) (2.185)

where we have substituted for the maximum likelihood solution for θML
0 (recalling

that we are performing a joint optimization over θ and m), and we have defined

A(m) =
I1(m)
I0(m)

. (2.186)

The function A(m) is plotted in Figure 2.20. Making use of the trigonometric iden-
tity (2.178), we can write (2.185) in the form

A(mML) =

(
1
N

N∑
n=1

cos θn

)
cos θML

0 −
(

1
N

N∑
n=1

sin θn

)
sin θML

0 . (2.187)
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Figure 2.21 Plots of the ‘old faith-
ful’ data in which the blue curves
show contours of constant proba-
bility density. On the left is a
single Gaussian distribution which
has been fitted to the data us-
ing maximum likelihood. Note that
this distribution fails to capture the
two clumps in the data and indeed
places much of its probability mass
in the central region between the
clumps where the data are relatively
sparse. On the right the distribution
is given by a linear combination of
two Gaussians which has been fitted
to the data by maximum likelihood
using techniques discussed Chap-
ter 9, and which gives a better rep-
resentation of the data.
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The right-hand side of (2.187) is easily evaluated, and the function A(m) can be
inverted numerically.

For completeness, we mention briefly some alternative techniques for the con-
struction of periodic distributions. The simplest approach is to use a histogram of
observations in which the angular coordinate is divided into fixed bins. This has the
virtue of simplicity and flexibility but also suffers from significant limitations, as we
shall see when we discuss histogram methods in more detail in Section 2.5. Another
approach starts, like the von Mises distribution, from a Gaussian distribution over a
Euclidean space but now marginalizes onto the unit circle rather than conditioning
(Mardia and Jupp, 2000). However, this leads to more complex forms of distribution
and will not be discussed further. Finally, any valid distribution over the real axis
(such as a Gaussian) can be turned into a periodic distribution by mapping succes-
sive intervals of width 2π onto the periodic variable (0, 2π), which corresponds to
‘wrapping’ the real axis around unit circle. Again, the resulting distribution is more
complex to handle than the von Mises distribution.

One limitation of the von Mises distribution is that it is unimodal. By forming
mixtures of von Mises distributions, we obtain a flexible framework for modelling
periodic variables that can handle multimodality. For an example of a machine learn-
ing application that makes use of von Mises distributions, see Lawrence et al. (2002),
and for extensions to modelling conditional densities for regression problems, see
Bishop and Nabney (1996).

2.3.9 Mixtures of Gaussians
While the Gaussian distribution has some important analytical properties, it suf-

fers from significant limitations when it comes to modelling real data sets. Consider
the example shown in Figure 2.21. This is known as the ‘Old Faithful’ data set,
and comprises 272 measurements of the eruption of the Old Faithful geyser at Yel-
lowstone National Park in the USA. Each measurement comprises the duration ofAppendix A
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Figure 2.22 Example of a Gaussian mixture distribution
in one dimension showing three Gaussians
(each scaled by a coefficient) in blue and
their sum in red.

x

p(x)

the eruption in minutes (horizontal axis) and the time in minutes to the next erup-
tion (vertical axis). We see that the data set forms two dominant clumps, and that
a simple Gaussian distribution is unable to capture this structure, whereas a linear
superposition of two Gaussians gives a better characterization of the data set.

Such superpositions, formed by taking linear combinations of more basic dis-
tributions such as Gaussians, can be formulated as probabilistic models known as
mixture distributions (McLachlan and Basford, 1988; McLachlan and Peel, 2000).
In Figure 2.22 we see that a linear combination of Gaussians can give rise to very
complex densities. By using a sufficient number of Gaussians, and by adjusting their
means and covariances as well as the coefficients in the linear combination, almost
any continuous density can be approximated to arbitrary accuracy.

We therefore consider a superposition of K Gaussian densities of the form

p(x) =
K∑

k=1

πkN (x|µk,Σk) (2.188)

which is called a mixture of Gaussians. Each Gaussian density N (x|µk,Σk) is
called a component of the mixture and has its own mean µk and covariance Σk.
Contour and surface plots for a Gaussian mixture having 3 components are shown in
Figure 2.23.

In this section we shall consider Gaussian components to illustrate the frame-
work of mixture models. More generally, mixture models can comprise linear com-
binations of other distributions. For instance, in Section 9.3.3 we shall consider
mixtures of Bernoulli distributions as an example of a mixture model for discrete
variables.Section 9.3.3

The parameters πk in (2.188) are called mixing coefficients. If we integrate both
sides of (2.188) with respect to x, and note that both p(x) and the individual Gaussian
components are normalized, we obtain

K∑
k=1

πk = 1. (2.189)

Also, the requirement that p(x) � 0, together with N (x|µk,Σk) � 0, implies
πk � 0 for all k. Combining this with the condition (2.189) we obtain

0 � πk � 1. (2.190)
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Figure 2.23 Illustration of a mixture of 3 Gaussians in a two-dimensional space. (a) Contours of constant
density for each of the mixture components, in which the 3 components are denoted red, blue and green, and
the values of the mixing coefficients are shown below each component. (b) Contours of the marginal probability
density p(x) of the mixture distribution. (c) A surface plot of the distribution p(x).

We therefore see that the mixing coefficients satisfy the requirements to be probabil-
ities.

From the sum and product rules, the marginal density is given by

p(x) =
K∑

k=1

p(k)p(x|k) (2.191)

which is equivalent to (2.188) in which we can view πk = p(k) as the prior prob-
ability of picking the kth component, and the density N (x|µk,Σk) = p(x|k) as
the probability of x conditioned on k. As we shall see in later chapters, an impor-
tant role is played by the posterior probabilities p(k|x), which are also known as
responsibilities. From Bayes’ theorem these are given by

γk(x) ≡ p(k|x)

=
p(k)p(x|k)∑

l p(l)p(x|l)
=

πkN (x|µk,Σk)∑
l πlN (x|µl,Σl)

. (2.192)

We shall discuss the probabilistic interpretation of the mixture distribution in greater
detail in Chapter 9.

The form of the Gaussian mixture distribution is governed by the parameters π,
µ and Σ, where we have used the notation π ≡ {π1, . . . , πK}, µ ≡ {µ1, . . . ,µK}
and Σ ≡ {Σ1, . . .ΣK}. One way to set the values of these parameters is to use
maximum likelihood. From (2.188) the log of the likelihood function is given by

ln p(X|π, µ,Σ) =
N∑

n=1

ln

{
K∑

k=1

πkN (xn|µk,Σk)

}
(2.193)
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where X = {x1, . . . ,xN}. We immediately see that the situation is now much
more complex than with a single Gaussian, due to the presence of the summation
over k inside the logarithm. As a result, the maximum likelihood solution for the
parameters no longer has a closed-form analytical solution. One approach to maxi-
mizing the likelihood function is to use iterative numerical optimization techniques
(Fletcher, 1987; Nocedal and Wright, 1999; Bishop and Nabney, 2008). Alterna-
tively we can employ a powerful framework called expectation maximization, which
will be discussed at length in Chapter 9.

2.4. The Exponential Family

The probability distributions that we have studied so far in this chapter (with the
exception of the Gaussian mixture) are specific examples of a broad class of distri-
butions called the exponential family (Duda and Hart, 1973; Bernardo and Smith,
1994). Members of the exponential family have many important properties in com-
mon, and it is illuminating to discuss these properties in some generality.

The exponential family of distributions over x, given parameters η, is defined to
be the set of distributions of the form

p(x|η) = h(x)g(η) exp
{
ηTu(x)

}
(2.194)

where x may be scalar or vector, and may be discrete or continuous. Here η are
called the natural parameters of the distribution, and u(x) is some function of x.
The function g(η) can be interpreted as the coefficient that ensures that the distribu-
tion is normalized and therefore satisfies

g(η)
∫

h(x) exp
{
ηTu(x)

}
dx = 1 (2.195)

where the integration is replaced by summation if x is a discrete variable.
We begin by taking some examples of the distributions introduced earlier in

the chapter and showing that they are indeed members of the exponential family.
Consider first the Bernoulli distribution

p(x|µ) = Bern(x|µ) = µx(1 − µ)1−x. (2.196)

Expressing the right-hand side as the exponential of the logarithm, we have

p(x|µ) = exp {x lnµ + (1 − x) ln(1 − µ)}
= (1 − µ) exp

{
ln
(

µ

1 − µ

)
x

}
. (2.197)

Comparison with (2.194) allows us to identify

η = ln
(

µ

1 − µ

)
(2.198)




