
IQ.58 IRE TRANSACTIONS ON INFORMATION THEORY 

A Useful Theorem  for Nonlinear Devices 
Having Gaussian Inputs* 

ROBERT PRICE? 

Summary-If and only if the inputs to a set of nonlinear, zero- 
memory devices are variates drawn from a Gaussian random 
process, a useful general relationship may be found between 
certain input and output statistics of the set. This relationship 
equates partial derivatives of the (high-order) output correlation 
coefficient taken with respect to the input correlation coeflicients, 
to the output correlation coefficient of a new set of nonlinear devices 
bearing a simple derivative relation to the original set. Application 
is made to the interesting special cases of conventional cross- 
correlation and autocorrelation functions, and Bussgang’s theorem 
is easily proved. As examples, the output autocorrelation functions 
are simply obtained for a hard limiter, linear detector, clipper, 
and smooth limiter. 

N THE COURSE of investigating the asymptotic 
frequency behavior of power spectra resulting from 
the passage of noise through zero-memory nonlinear 

devices, an interesting, unique property of Gaussian 
processes has been encountered, which does not appear 
to have been previously reported. 

8TATEMEXT OFTHE THEOREM 

Assume x1, x2, . . . , 2, to be random variables from a 
Gaussian process whose nth order joint probability density 
is given by:l 

where r, and s,, m  = 1, 2, . . . , N, are integers lying 
between 1 and n, inclusive, and are not necessarily distinct. 
The k, are positive integers, with 1~ = czeI k,. ei, is 
the number of times i appears in (T,, s,). 6,,,, is the 
Kronecker 6 function, 6,,,, = 1 for r, = s,, 0 for r, # s,. 
The symbol fi’“‘(si) denotes the 4th derivative of fi(z), 
taken at xi. 

Furthermore, not only is the above theorem true for 
inputs having an nth-order joint Gaussian distribution, 
but it holds true only for such inputs if the f;(x) are 
allowed to be of general form. 

Proof 

We now prove that in order for (3) to be satisfied it is 
both sufficient and necessary that the xi have the joint. 
probability density given by (1). Assume that each f* (x) 
can be represented by the sum of two Laplace transforms,’ 

where j 111, j is the determinant of M, = [P,~] and pI. = 
X,X* - 2, x, - - = p8, is the correlation coefficient of 5, and 
CC,. The means of 5, and x, are g and z, respectively. 
Al,. is the cofactor of psv in M,. 

Let there be n zero-memory nonlinear devices (linearit#y 
of course being included as a special case) specified by 
the input-output relationship fi(s), i = 1, 2, . . . , n. Let 
each xi be the single input to a corresponding fi(z), and 
designate the nth-order correlation coefficient of the 
outputs as: 

_---- 
R = 11 fi(Xi) 

i=1 (2) 

where the bar denotes the average taken over all zi. Then, 
with weak restrictions on the f”(z), we have the following 
theorem for the partial derivatives of R with respect to 
the input correlat’ion coefficients: 

* Manuscript received by the PGIT, January 3, 1958. The 
research in this paper was supported jointly by the Army, Navy, 
and Air Force under contract with Mass. Inst. Tech. 

t Lincoln La,b., M.I.T., Lexington, Mass. 
* H. Cram&, “Mathematical Methods of Statistics,” Princeton 

University Press, Princeton, N. J., sec. 24.2; 194G. 

where 

(5) 

and the C;, and Ci- are appropriate contours. Without 
assuming any particular form for p(zl, x2, . . e , 2,) for the 
present, 

* 0 ft(x;)p(xl, x*, . . . , x,,) dr, dx2 * * - dx,. (6) 

Substituting (4) in (6) and inverting the order of inte- 
gration, following Rice’s characteristic function method,” 

2 D. V. Widder, “The Laplace Transform,” Princeton University 
Pre;> Pp&;;, 2. J., ch. 6; 1946. 

Mathematxal analysis of random noise,” BeZZ 
Sys. ?eci. J., Gal. 23, pp, 282332, July, 1944; and vol. 24, pp, 
46-156; January, 1945. See sec. 4.8. 



IRE 2’12.4 SS,1 C’I’IONS ON INFORMA 2’ION THEORY June 

. fi h.,Ju,)6(u,, uz, - - - , u,J da cZu2 . . . du, (7) 
i-1 

where c’ denotes a summation over all possible f 
combinations and e(u,, ua, -1. , u,) is the nth-order 
characteristic function: 

sexp (j $?AiXi) dX, dX, *** dX, (8) 

with j = d-1. 
We find a necessary condition for (3) to be satisfied by 

setting N = 1 = k = k,. The partial derivative of the 
left-hand side of (3) is taken on 8 in the integrand of (7), 
and the derivat,ives of the right-hand side are taken using 
(4). Thus the necessary condition: 

is obtained. The term in braces must be zero in order to 
satisfy (9) for arbitrary fi (x) and hence hiA (u). Integrating 
the resulting equation for all (T,, s,) (but taking into 
account that pr. = p.?), 

log ech,u,, -** ,un) 

=-&# PrJw* + gbh, %, . * * , 4 (10) 

where g is some function which must now be found. 
Let pr, = 1 for all (T, s). Then all the zi are completely 

correlated, and p(xl, xZ, . . . , z,) can be written: 

P(X1, x2, **- , xn) = P(Zl> fi b(x, - 21 + Gy - Z) (11) 
i=2 

where 6(x) is the Dirac S function. Substituting (11) in 
(8), 0 is of the form: 

where 

for all pra = 1 (12) 

g,(u) = l” pl(xl - 3$ei”‘“‘-“’ d(x, - zy). (13) 

Similarly, when pI1 = 1 r, pl? = prl = - 1 for all 
r f 1, and prq = I for all T  or B # 1, then x?, .I’:$, . . . , 2, 
are completely correlated with (- x,) and we obtain: 

for pll = 1, P,~ = pvl = -1 for all r # I, 

and pT-. = 1 for all T, s # 1. (14) 

Substituting (12) in (lo), we find: 

where g2(u) = log g,(u) + u2/2. On the other hand, 
substituting (14) in (10) yields 

gh,u*, *** , UJ = j &+% + 92 
( 

2U, - PUi 
i=l > 

. (16) 
i=l 

Since u1 and cy5] ui may be considered as independent 
variables, the only solution which renders (15) and (16) 
compatible is g2(u) = K, a constant. Thus, finally, we 
have from (10) and (15) the necessary condition: 

qu,,u,, *.* ,u,) 

= exp 
[ -;gg ~~2.w, + j 2 uiZ + K  1 . (17) 

i=l 

This is recognized to be the characteristic function of the 
n-dimensional Gaussian distribution* of (1) (K = 0 for 
proper normalization). 

It is now a simple matter to prove the sufficiency of 
(17), and hence (I), for satisfying (3). Using (17) in (7), 
and remembering that p,. = par, 

(-1)” ale, 

fi @Pw.)km 

N 

ii kmSr,., 

1 
0 m=x 

= - 
2 

m=1 

- fi u,m~~fi.km~~~~(ui)B(u~rupru~) du, dzr, . . . du,. (1% 

By analogy to (6) and (7), and differentiating (4) with 
respect to x, the right side of (18) is seen to be equal to 

, x,) dx, dx, . . . dx, (19) 

thus yielding (3). 

A SPECML CASE AND ITS APPLICATIONS 

Consider the familiar situation where n = 2, and let 
p denote the crosscorrelation coefficient of x1 and x2. 
Then (3) yields 

cm 

Suppose that x1 and x2 are values of a stationary Gaussian 
time series x(t) whose autocorrelation function is p(r). 
x1 is taken at time t and xz at time (t + 7). R(T) will 
denote the crosscorrelation function between the outputs 

4 Cram&, op. cit., sec. 24.1. 
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of two zero-memory nonlinear devices whose inputs are of two zero-memory nonlinear devices whose inputs are We find easily We find easily 
x(t) and x(t + T), respectively. x(t) and x(t + T), respectively. 3- 3- 

Taking the particular case where x(t) = 0, z (t) = 1, Taking the particular case where x(t) = 0, z (t) = 1, 
and using (1),5 and using (1),5 

71 

6% 

2ndl - pY(7) 
dx, dx,. w> 

Eq. (21) is particularly simple when the fi(x) are 
piecewise-polynomial functions and k is sufficiently high. 
Then the fik’(x) consist entirely of 6 functions of various 
orders and the integral can be easily evaluated. 

It is often of interest to obtain the derivatives of a 
crosscorrelation function with respect to r. It is con- 
venient to break down such r derivatives into a series of 
products of derivatives of R(T) with respect to p(7), and 
p(7) with respect to 7, using 

dR(d _ aR(4 &Cd 
d7 ---* a~(4 dT 

(22) 

This enables the nonlinear devices to be treated in- 
dependently of the shape of the input correlation function 
p(7), using (21). Similarly, the derivatives of p(7) with 
respect to 7 do not involve the fi(x). 

As an example, Cohen6 shows that in general, for 
autocorrelation functions R(T), the limiting behavior of 
the corresponding power spectrum a(w) is given by: 

l im w’~(w) = _ I dR(l?Il 
a-m ?r dr ,7-o+ (23) 

w2+(~) + 1 dR(7) 
T dr II = -A d3R(T) r="+ 3r-$- T-O+ 

and so on, where the derivatives are with respect to r. 
Another application of (20) is in deriving Bussgang’s 

interesting result7 that the crosscorrelation function 
between the input and the output of a nonlinear device 
driven by Gaussian noise has the same shape as the 
input autocorrelation function. In this case fl(z) = x 
and f*(x) is arbitrary. Then f:(x) is unity, and all higher 
derivatives of fl(x) are zero. Putting this into (21) and 
evaluating the integral, 

f:(x) exp (-x2/2) dz: 
-vsi . 

k = 1 
(2-4) 

Ic > I. 
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6 R. Cohen, “Some Analytical and Practical Aspects of Wiener’s 
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Mass., Tech. Rep. No. 69, ch. 4, sec. 2; June 2, 1948. 

T  J. J. Bussgang, “Crosscorrelation Functions of Amplitude- 
Distorted Gaussian Signals,” Res. Lab. of Electronics, M.I.T., 
Cambridge, Mass., Tech. Rep. 216, sec. 3; March 26, 1952. 

thus yielding Bussgang’s result. Unlike Bussgang’s 
theorem, (20) cannot be generalized to hold for probability 
distributions other than Gaussian.R-1o 

SOME SIMPLE fhJTOCORRELATION &ANPLES [FOR 

x(t) = 0,2@ = 11 

Hard Limiter 

Van Vleck’s well-known result on the autocorrelation 
function of the output of a hard limiter” can be derived 
very simply, using (21). If 

f,(x) = fz(x) = / I; x 2 O 
I-1; 5<0 

then f:“(x) and fi” (x) are first-order 6 functions of area 
2, at x = 0. 

Substituting in (21) and integrating, 

(27) 

When p(7) = 0, R(T) = 0. Thus 

which is Van Vleck’s result. 

Linear Detector 

Similarly, the autocorrelation function of the output 
of a linear detector can be easily found. If 

fl(X) = f2(x) = lx; x 2 O 
lo; x<o 

then f:“’ (z) and f:“’ (x) are first-order 6 functions of area 
unity at x = 0. Substituting in (21) and integrating: 

#R(T) 1 
ap($ - 2?r v?TpyYj. 

(30) 

Doubly-integrating (30) with the boundary conditions: 

s J. F. Barrett and D. G. Lampard, “&4n expansion for some 
second-order probability distributions and its application to noise 
problems,” IRE TRANS. ON INFORMATION THEORY, vol. IT-l, 
I pp. 10-15; March, 1955. 

9 J. L. Brown, Jr., “On a cross-correlation property for stationary 
random processc 
IT-3, pp. 2831 

:s,” IRE TRANS. ON INFORMATION THEORY, vol. 
; March, 1957. 

l’J.4. H. Nut tall, “Invariance of Correlation Functions under 
Nonlinear Transformations,” Res. Lab. of Electronics, M.I.T., 
Cambridge, Mass., Quart. Progress Rep., p. 63; October 15, 1957. 

I1 J. L. Lawson and G. E. Uhlenbeck, “Threshold Signals,” 
McGraw-Hil l  Book Co., Inc., New York, N. Y., p. 58; 1950. 
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autocorrelation function of the output of a device having 

for p(7) = 0 (31) 
an error-function characteristic will be derived. With 

R(T) = (35) 

we obtain: 

R(T) = 

which is in 

Clipper 

we have 

(36) 

1 
2, 1 

P(T) cos-’ [P(T)] + v5-q-R (32) 
Substituting in (21): 

agreement with Rice’s result.” 

The relations derived independently by Robin’3 and 
Lsning and Battin14 for the autocorrelation function of 
the output of a clipper may also be found by this method. 
With a clipper characteristic: where 

i 1; 
1 

11x io1 - P%)l + 11[1 - P2(d1 

f,(x) = f2(4 = 

1 

x; -lix<l (33) 
p’ = -\z-2,1 - p2(7)] + 1}2 - p”(T) 

(38) 
P(d[l - P’(T)] 

-1; 211 ” = (1-2[1 - ,02(T)] + II2 - p’(T) 

and ji”’ (x) and fk” (x) each are a pair of first-order 6 
functions at x = -1 and x = 1, with areas 1 and - 1, The term in braces in (37) must equal unity, since it. is 

respectively. Substituting in (21) and integrating, 
the integral of a second-order Gaussian probability 
density. Thus, from (38), 

a’R(T) exp [ -1 +l?p(T)] - exp [ -1 -“‘t(T)] -__ - 
add2 - 

__- 
7rz/l - p2(7)--- 

(34) g = 21, Js$$ 
PT 

which is Robin’s result, for input noise of unit variance. 

Smooth Limiter 

1 ----__ 
= 241 + ,-2)2 - z-4p”($ (39) 

Finally, Baum’s recent interesting result” for the Integrating and using the condition that when P(T) = 0, 
R(T) = 0, 

12 Rice, op. cit., eq. (4.7-5). 
13 L. Robin, “The autocorrelation function and power spectrum 

of clipped thermal noise. Filtering of simple periodic signals in this 
noise,” Ann. TelecomTn., vol. 7, pp. 375-387; September, 1952. 

14 J. H. Laning, Jr. and R. H. Battin, “Random Processes in 
Automatic Control,” McGraw-Hil l  Book Co., Inc., New York, 
N. Y., p. 362, eq. (B-8); 1956. 

i5R. F. Baum, “The correlation function of smoothly limited 
Gaussian noise,” IRE TRANS. ON INFORMATION THEORY, vol. 
IT-3, pp. 193-197; September, 1957. 

R(T) = f s P(T) d&d 
” d(Z” + 1)” - P”(T) 

1’ . -, = -sin P(T) 
27r [ 1 itlZ  (40) 

which is in agreement with Baum’s result. 


