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Absfracf-Price’s theorem for zero-memory nonlinear devices 
with Gaussian inputs is modified to make the theorem more ame- 
nable to the analysis of functions of more than two Gaussian 
variates. In the general case a sing2e ordinary differential equation 
for the output correlation function is derived. Several examples 
illustrate the applicability of the modified version. 

I. INTRODUCTION 

N 1958 Price[” stated and proved a theorem yielding 
either ordinary or partial differential equations for 
the expected value of a  nonlinear function of jointly 

distributed Gaussian random variables. This t,heorem 
was later extended to more general nonlinearities by 
McMahon’21 and a simplified and less restrictive proof 
given by Papoulis. [31 Although Price’s theorem is valid 
for functions of an arbitrary number of joint-Gaussian 
variables, use of the theorem is essentially limited to 
functions of only two joint-Gaussian variables. In the 
general case of n  variables applicability of the theorem 
requires at least the simultaneous solution of a  set of 
n(n - 1)/2 ordinary differential equations. In this paper, 
Price’s theorem is modified to yield a single ordinary 
differential equation for the general case. The modified 
version is motivated by the works of Plackett14’ and 
Xabeya. Is1 

II. A PARTIAL DIFFERENTIAL EQUATION FOR THE 
GAUSSIAN DISTRIBUTION 

The basis for Price’s theorem is actually a partial 
differential equation satisfied by the multivariate Gaussian 
distribution. Let x1, xZ, . . . , X, be jointly Gaussian 
with unit variances, covariance matrix K, = [pig] and 
joint probability density function pl(x,, . . . , x,). Let 
l)a(% -.* , x,) denote the same probability density 
function with the covariance mat’rix K, replaced by 
K, where 

K, = [a(l-sij)pii], (1) 

a  is a parameter and aii is the Kronecker delta-function. 
Note that the original density function and covariance 
matrix are obtained from pn(zl, . . . , x,) and K, by 
setting 01 = 1, and furthermore, that setting 01 = 0 
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yields K, = I and p,(x,, ..a , s,) = nlil p(xi); i.e., 
the xi are statistically independent when a! = 0. Either 
by a direct calculation1 or by writing pC(xl, . . . , x,) as 
the inverse Fourier transform of its characteristic function, 
the identity 

ap,- aa ! - z  p ii & (2) 

is readily verified. From this equation by repeated 
differentiation we find 

(3) 

where the operator x is defined as 

X(') = C Pii $$i$ 
i<i *z I 

and X” denotes repeated application of the operator 
k-times. Equation (3) is the fundamental relationship 
which leads directly to a Price-type theorem. 

III. THE MODIFIED VERSION OF PRICE'S THEOREM 

Let f(z,, * . . , x,) be some zero-memory transformation 
of the variables zi and define 

R, = E,[fh, . . . , 41, (5) 
where E, denotes that the expectation is carried out 
with respect to the density function P~(x,, * . * , x,). 
In general, the problem with which we shall concern 
ourselves is that of evaluating R, = E,[f(x,, * * - , ~1; i.e., 
R, for a: = 1. Multiplying both sides of (3) by 
fh, * ** 7  x,), integrating over the variables xi and 
integrating by parts 2k times on the right-hand side yields 

In integrating by parts, we have assumed that products 
of derivatives of the Gaussian multivariate density and 
derivatives of the nonlinearity go to zero at xi = =t a, 
i = 1,2, *** ) n. This is equivalent to Papoulis’ condition 
on the nonlinearity.’ Employing the identityL6’ 

= (k ! l)! s az (c - @-‘g(E) 4 (7) 

1 See Placket&I41 eq. (3). 
2 See Papoulis,[31 eq. (3). 
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the solution to (6) can be written for k > 1 as 
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+(A)! o s 
1 (1 - c$-‘Ea[Xkf] da, (8) 

where we have utilized (6) to evaluate the initial con- 
ditions; viz., 

d”R, 
dol” 

= E&c”f]. 
a=0 (9) 

Either (6) or its solution (8) may be regarded as a modified 
version of Price’s theorem. Note that the initial conditions, 
the summation in (8), are evaluated by assuming all 
of the variables x1, . . . , x, to be statistically independent. 

In the case n = 2, (6) reduces to 

dkR E -F = d 
dar a ptz ax;ax; -5 f(x1, x2) 1 (10) 

which is, upon replacing CYP,~ by p, McMahon’s extension 
of Price’s theorem.3 

IV. EXAMPLES~ 

Example l-Product Moments 

Let n = 2m be an even integer, f(x,, * . . , x,) = n?-, xi 
and take k = m + 1. Since X” is an operator involving 
2k differentiations, it follows by inspection that 

x”“f = &[fl = E,,[xf] = . . . = E,[x”‘-‘fl = 0, (11) 

and (8) yields 

EJx1x2 . . . x,,] = 5 EoW’fl. (12) 

The only terms of xrnf which are nonzero are those 
involving one differentiation with respect to each xi. 
Since each of these terms occurs m! times, we obtain 

EJxlxz a.. x,,] = .l,xre PiiPkZ * * * Pur1 (13) 

where i # k # 1 #, etc., and the total number of terms 
in the summation is (am) !/2”~2!.~ When n is odd, a 
similar argument shows that El[xIxz . . e x,] = 0. This 
result along with (13) can be used as the defining relations 
for a multivariate Gaussian distribution.“’ Consequently, 
Gaussianness is both necessary and sufficient for the 
modified version of Price’s theorem to hold. 

Example 2-Xchlti$i integral for E[sgn (x1x2x3x4)] 

In this case n = 4, we take lc = 1 and f = sgn (x1x2m8r4). 
Again EJf] = 0 and (8) gives 

3 See Price,[ll eq. (20), and McMahon,.Lzl eq. (5). 
4 In these examples, all Gaussian variates are assumed to have 

zero means and unit variances. 
6 See Middleton, ~1 p. 343. 

where i # j # p # q and the expectation is now a con- 
ditional expectation with respect to the conditional 
density function prr(xo, x, 1 xi = 0, xi = 0). This con- 
ditional expectation has the well-known arcsine form”’ 
and is most conveniently expressed in terms of partial 
correlation coe$cients”’ yielding 

E,[sgn (x1x2x3x4)] = -$I z pii l’ ST- da, (15) 
% 

where i # j # p # q and P~~.~~(QI) is a partial correlation 
coefficient. See PlackettF4’ and Nabeya”’ for similar 
derivations of (15). 

Example S-Product Moments of Error Functions 

Consider initially the problem of evaluating6 

Rl =&[gErfk)]- (16) 

Taking k = 1 in the modified version of Price’s theorem 
and noting that E,[f] = 0, (8) yields 

.[ E.[Erf @) Erf (y) exp (-w)] dol. (17) 

Evaluating the expectation, we find after some algebra 

Comparing this result with (15), it follows that 

This is a generalization of Baum’s result for the case 
of the product of two error function nonlinearities.’ The 
above result shows that averages after smooth limiting 
are the same as averages after hard limiting except for 
a scale change in all correlation coefficients. 

Equation (19) can be generalized to the case of an 
arbitrary number of Gaussian variates; viz., 

El[ 0 Erf @)I = El,Il+Lz)[ G w xi]. (20) 

6 Erf z = GJ: exp( -E2/2) d$. 
7 See Price,lll eqs. (28) and (40). 
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Although this result could be proved using the modified 
version of Price’s theorem, it is more easily established 
by an obvious extension of Blachman’s derivation”’ 
for the case n = 2. 

Example h-Product Moments Involving Hermite Poly- 
nomials 

Hermite polynomials arise frequently in the study of 
nonlinear systems with Gaussian inputs since the Gaussian 
distribution is the weighting function for orthogonality 
of these polynomials. The pth order Hermite polynomial 
is here defined as 

zg 
H,(x) = (-1ye” $ e ; p = 0, 1, . * f . (21) 

if a, b, c 5 m. If a, b, or c is greater than m the expectation 
is zero. 

In the case when c = 0, H,(x,) = 1. Then the condition 
that the exponents of the correlation coefficients in (28) 
be non-negative implies that a = b = m and (28) yields 
the familiar expression 

-fMK,(x,)HdxJl = a!pfz L. (29) 

In the special case a = b = c = n, (28) gives the simple 
form 

n even, 
(30) 

n odd. 
If x is a Gaussian variate with zero mean and unit variance, 
it follows from the above definition that 

The Product of Four Polynomials 

E’,[H,(x)l = ho. (22) 
Although the modified version of Price’s theorem can 

in principle be applied to evaluate expectations of products 
Furthermore, since dH,(x)/dx = pH,-,(x) for p > 0, of an arbitrary number of Hermite polynomials, the 
we have algebra involved soon becomes untractable. As our final 

E~[&Hz&] = p&w. 

example, we consider the case of four identical non- 
(23) linearities; viz., 

Products of Three Polynomials f&t x2, x3, x4) = fi H,(xi>. (31) 
i=l 

Consider first the expectation of the product of three Taking k = m + 1, 7% = 2n, in the modified version of 
Hermite polynomial nonlinearities; i.e., Price’s theorem, it follows that (25) is satisfied for the 

(24) 
above nonlinearity. Following the above steps leading 
to (28), we find 

where a + b + c = 2m is assumed to be an even integer 
since E,[f] = 0 for a + b + c odd. Taking k = m + 1 in 
the modified version of Price’s theorem, (8) yields 

E1[ k H,(xi)] 
i=l 

since E,,[f] = E,Jxf] = - . . = E,[x”-‘f] = 0 by virtue Comparing this equation with the identity 

of (23) and x”“f = 0 since Xrn+l involves 2m + 2 
differentiations and the degree of f is 2m. Writing Di = (a + P + 7)” = g I& ($(pTY (33) 
a/axi and using the definition (4) to expand the operator 
X, the above equation becomes we can write 

R, = 5 E&P,J~D, + p&D3 + dMWf1, (&$ &[ jj K&J] + (n!)‘(P12P34 + P18Pz4 f P14P23)“j (34) 

= $, Eo[ 2 2 ( ~)~~)p,l.p;~“p;~D~-‘D~-r+‘D~f]. 
where the symbolism + means that the binomial coef- 
ficients occurring on the right-hand side of (34) are to be squared Thus 

(27) 

Employing (23), we see that the only term of the double 
summation which is nonzero is that for which m - s = a, 
m - r + s = b and r = c. Consequently, making t’hese V. OTHER MODIFICATIONS 

substitutions, we obtain The key to the modified version of Price’s theorem is 

E,[H,(x,)H,(x,)H,(x,)l 
the introduction of the parameter a! multiplying all 
nondiagonal elements in the covariance matrix. However, 

m-c m--b m-a 
= a!bk! (,n”” c)! (,,“” b)! (mpz? ,$! (28) 

this parameter could have been introduced in a variety 
of different ways; for example, two possibilities in the 
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four dimensional case are 

r 
1 PPlZ PP13 PP14 

KS = 1 PPlZ 1 P23 P24 

PP13 P23 1 P31 
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in the case of more than two dimensions. The modified 
version as well as Price’s original theorem were shown to 
follow directly from a partial differential equation satisfied 
by the Gaussian multivariate density. The first example 
illustrating the use of the theorem enabled us to evaluate 
by inspection product moments of Gaussian variates 
and also demonstrated the necessity of the Gaussian 
assumption. The next two examples were simple deri- 
vations of fourth product moments after hard and smooth 
limiting of Gaussian variables. The last set of examples 
considered evaluation of product moments after Hermite 
polynomial nonlinearities. In particular, the fourth prod- 
uct moment of identical Hermite polynomials was found 
to be simply related to the fourth product moment of 
Gaussian variates. Finally, other modifications of Price’s 
theorem were discussed. 

In conclusion, we feel that the modified version of 
Price’s theorem provides a simple and useful means for 
evaluating product moments after nonlinear operations 
on multidimensional Gaussian variates as does Price’s 
original theorem in the two-dimensional case. 
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